Description: Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | niabn.1 | ⊢ 𝜑 | |
Assertion | niabn | ⊢ ( ¬ 𝜓 → ( ( 𝜒 ∧ 𝜓 ) ↔ ¬ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | niabn.1 | ⊢ 𝜑 | |
2 | simpr | ⊢ ( ( 𝜒 ∧ 𝜓 ) → 𝜓 ) | |
3 | 1 | pm2.24i | ⊢ ( ¬ 𝜑 → 𝜓 ) |
4 | 2 3 | pm5.21ni | ⊢ ( ¬ 𝜓 → ( ( 𝜒 ∧ 𝜓 ) ↔ ¬ 𝜑 ) ) |