Metamath Proof Explorer


Theorem niex

Description: The class of positive integers is a set. (Contributed by NM, 15-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion niex N ∈ V

Proof

Step Hyp Ref Expression
1 omex ω ∈ V
2 df-ni N = ( ω ∖ { ∅ } )
3 difss ( ω ∖ { ∅ } ) ⊆ ω
4 2 3 eqsstri N ⊆ ω
5 1 4 ssexi N ∈ V