| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlelch.1 |
⊢ 𝑇 ∈ LinFn |
| 2 |
|
nlelch.2 |
⊢ 𝑇 ∈ ContFn |
| 3 |
1
|
nlelshi |
⊢ ( null ‘ 𝑇 ) ∈ Sℋ |
| 4 |
|
vex |
⊢ 𝑥 ∈ V |
| 5 |
4
|
hlimveci |
⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) |
| 7 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 8 |
7
|
cnfldhaus |
⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
| 9 |
8
|
a1i |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( TopOpen ‘ ℂfld ) ∈ Haus ) |
| 10 |
|
eqid |
⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 |
| 11 |
|
eqid |
⊢ ( normℎ ∘ −ℎ ) = ( normℎ ∘ −ℎ ) |
| 12 |
10 11
|
hhims |
⊢ ( normℎ ∘ −ℎ ) = ( IndMet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 13 |
|
eqid |
⊢ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) = ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) |
| 14 |
10 12 13
|
hhlm |
⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) |
| 15 |
|
resss |
⊢ ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
| 16 |
14 15
|
eqsstri |
⊢ ⇝𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
| 17 |
16
|
ssbri |
⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝑥 ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) 𝑥 ) |
| 19 |
11 13 7
|
hhcnf |
⊢ ContFn = ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 20 |
2 19
|
eleqtri |
⊢ 𝑇 ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 21 |
20
|
a1i |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑇 ∈ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 22 |
18 21
|
lmcn |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ∘ 𝑓 ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) ( 𝑇 ‘ 𝑥 ) ) |
| 23 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
| 24 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ ( null ‘ 𝑇 ) ) |
| 25 |
24
|
adantlr |
⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) ∈ ( null ‘ 𝑇 ) ) |
| 26 |
|
elnlfn2 |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝑓 ‘ 𝑛 ) ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) |
| 27 |
23 25 26
|
sylancr |
⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) = 0 ) |
| 28 |
|
fvco3 |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 29 |
28
|
adantlr |
⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 30 |
|
c0ex |
⊢ 0 ∈ V |
| 31 |
30
|
fvconst2 |
⊢ ( 𝑛 ∈ ℕ → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 33 |
27 29 32
|
3eqtr4d |
⊢ ( ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) |
| 34 |
33
|
ralrimiva |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ∀ 𝑛 ∈ ℕ ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) |
| 35 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → 𝑇 Fn ℋ ) |
| 36 |
23 35
|
ax-mp |
⊢ 𝑇 Fn ℋ |
| 37 |
|
simpl |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ) |
| 38 |
3
|
shssii |
⊢ ( null ‘ 𝑇 ) ⊆ ℋ |
| 39 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ ( null ‘ 𝑇 ) ⊆ ℋ ) → 𝑓 : ℕ ⟶ ℋ ) |
| 40 |
37 38 39
|
sylancl |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑓 : ℕ ⟶ ℋ ) |
| 41 |
|
fnfco |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝑓 : ℕ ⟶ ℋ ) → ( 𝑇 ∘ 𝑓 ) Fn ℕ ) |
| 42 |
36 40 41
|
sylancr |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ∘ 𝑓 ) Fn ℕ ) |
| 43 |
30
|
fconst |
⊢ ( ℕ × { 0 } ) : ℕ ⟶ { 0 } |
| 44 |
|
ffn |
⊢ ( ( ℕ × { 0 } ) : ℕ ⟶ { 0 } → ( ℕ × { 0 } ) Fn ℕ ) |
| 45 |
43 44
|
ax-mp |
⊢ ( ℕ × { 0 } ) Fn ℕ |
| 46 |
|
eqfnfv |
⊢ ( ( ( 𝑇 ∘ 𝑓 ) Fn ℕ ∧ ( ℕ × { 0 } ) Fn ℕ ) → ( ( 𝑇 ∘ 𝑓 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) ) |
| 47 |
42 45 46
|
sylancl |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ( 𝑇 ∘ 𝑓 ) = ( ℕ × { 0 } ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝑇 ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ℕ × { 0 } ) ‘ 𝑛 ) ) ) |
| 48 |
34 47
|
mpbird |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ∘ 𝑓 ) = ( ℕ × { 0 } ) ) |
| 49 |
7
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 50 |
49
|
a1i |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 51 |
|
0cnd |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 0 ∈ ℂ ) |
| 52 |
|
1zzd |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 1 ∈ ℤ ) |
| 53 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 54 |
53
|
lmconst |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) |
| 55 |
50 51 52 54
|
syl3anc |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( ℕ × { 0 } ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) |
| 56 |
48 55
|
eqbrtrd |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ∘ 𝑓 ) ( ⇝𝑡 ‘ ( TopOpen ‘ ℂfld ) ) 0 ) |
| 57 |
9 22 56
|
lmmo |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → ( 𝑇 ‘ 𝑥 ) = 0 ) |
| 58 |
|
elnlfn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ) |
| 59 |
23 58
|
ax-mp |
⊢ ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 0 ) ) |
| 60 |
6 57 59
|
sylanbrc |
⊢ ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) ) |
| 61 |
60
|
gen2 |
⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) ) |
| 62 |
|
isch2 |
⊢ ( ( null ‘ 𝑇 ) ∈ Cℋ ↔ ( ( null ‘ 𝑇 ) ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ( null ‘ 𝑇 ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ( null ‘ 𝑇 ) ) ) ) |
| 63 |
3 61 62
|
mpbir2an |
⊢ ( null ‘ 𝑇 ) ∈ Cℋ |