| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 2 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 3 | 1 2 | elmap | ⊢ ( 𝑇  ∈  ( ℂ  ↑m   ℋ )  ↔  𝑇 :  ℋ ⟶ ℂ ) | 
						
							| 4 |  | cnvexg | ⊢ ( 𝑇  ∈  ( ℂ  ↑m   ℋ )  →  ◡ 𝑇  ∈  V ) | 
						
							| 5 |  | imaexg | ⊢ ( ◡ 𝑇  ∈  V  →  ( ◡ 𝑇  “  { 0 } )  ∈  V ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑇  ∈  ( ℂ  ↑m   ℋ )  →  ( ◡ 𝑇  “  { 0 } )  ∈  V ) | 
						
							| 7 |  | cnveq | ⊢ ( 𝑡  =  𝑇  →  ◡ 𝑡  =  ◡ 𝑇 ) | 
						
							| 8 | 7 | imaeq1d | ⊢ ( 𝑡  =  𝑇  →  ( ◡ 𝑡  “  { 0 } )  =  ( ◡ 𝑇  “  { 0 } ) ) | 
						
							| 9 |  | df-nlfn | ⊢ null  =  ( 𝑡  ∈  ( ℂ  ↑m   ℋ )  ↦  ( ◡ 𝑡  “  { 0 } ) ) | 
						
							| 10 | 8 9 | fvmptg | ⊢ ( ( 𝑇  ∈  ( ℂ  ↑m   ℋ )  ∧  ( ◡ 𝑇  “  { 0 } )  ∈  V )  →  ( null ‘ 𝑇 )  =  ( ◡ 𝑇  “  { 0 } ) ) | 
						
							| 11 | 6 10 | mpdan | ⊢ ( 𝑇  ∈  ( ℂ  ↑m   ℋ )  →  ( null ‘ 𝑇 )  =  ( ◡ 𝑇  “  { 0 } ) ) | 
						
							| 12 | 3 11 | sylbir | ⊢ ( 𝑇 :  ℋ ⟶ ℂ  →  ( null ‘ 𝑇 )  =  ( ◡ 𝑇  “  { 0 } ) ) |