Metamath Proof Explorer


Theorem nlfnval

Description: Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nlfnval ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( 𝑇 “ { 0 } ) )

Proof

Step Hyp Ref Expression
1 cnex ℂ ∈ V
2 ax-hilex ℋ ∈ V
3 1 2 elmap ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ )
4 cnvexg ( 𝑇 ∈ ( ℂ ↑m ℋ ) → 𝑇 ∈ V )
5 imaexg ( 𝑇 ∈ V → ( 𝑇 “ { 0 } ) ∈ V )
6 4 5 syl ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ( 𝑇 “ { 0 } ) ∈ V )
7 cnveq ( 𝑡 = 𝑇 𝑡 = 𝑇 )
8 7 imaeq1d ( 𝑡 = 𝑇 → ( 𝑡 “ { 0 } ) = ( 𝑇 “ { 0 } ) )
9 df-nlfn null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑡 “ { 0 } ) )
10 8 9 fvmptg ( ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ( 𝑇 “ { 0 } ) ∈ V ) → ( null ‘ 𝑇 ) = ( 𝑇 “ { 0 } ) )
11 6 10 mpdan ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ( null ‘ 𝑇 ) = ( 𝑇 “ { 0 } ) )
12 3 11 sylbir ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( 𝑇 “ { 0 } ) )