Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
⊢ ℂ ∈ V |
2 |
|
ax-hilex |
⊢ ℋ ∈ V |
3 |
1 2
|
elmap |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ ) |
4 |
|
cnvexg |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ◡ 𝑇 ∈ V ) |
5 |
|
imaexg |
⊢ ( ◡ 𝑇 ∈ V → ( ◡ 𝑇 “ { 0 } ) ∈ V ) |
6 |
4 5
|
syl |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ( ◡ 𝑇 “ { 0 } ) ∈ V ) |
7 |
|
cnveq |
⊢ ( 𝑡 = 𝑇 → ◡ 𝑡 = ◡ 𝑇 ) |
8 |
7
|
imaeq1d |
⊢ ( 𝑡 = 𝑇 → ( ◡ 𝑡 “ { 0 } ) = ( ◡ 𝑇 “ { 0 } ) ) |
9 |
|
df-nlfn |
⊢ null = ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↦ ( ◡ 𝑡 “ { 0 } ) ) |
10 |
8 9
|
fvmptg |
⊢ ( ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ( ◡ 𝑇 “ { 0 } ) ∈ V ) → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
11 |
6 10
|
mpdan |
⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
12 |
3 11
|
sylbir |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |