Metamath Proof Explorer


Theorem nlim1

Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion nlim1 ¬ Lim 1o

Proof

Step Hyp Ref Expression
1 1n0 1o ≠ ∅
2 0ex ∅ ∈ V
3 2 unisn { ∅ } = ∅
4 1 3 neeqtrri 1o { ∅ }
5 df1o2 1o = { ∅ }
6 5 unieqi 1o = { ∅ }
7 4 6 neeqtrri 1o 1o
8 7 neii ¬ 1o = 1o
9 simp3 ( ( Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o ) → 1o = 1o )
10 8 9 mto ¬ ( Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o )
11 df-lim ( Lim 1o ↔ ( Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o ) )
12 10 11 mtbir ¬ Lim 1o