Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nlim1 | ⊢ ¬ Lim 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 | ⊢ 1o ≠ ∅ | |
2 | 0ex | ⊢ ∅ ∈ V | |
3 | 2 | unisn | ⊢ ∪ { ∅ } = ∅ |
4 | 1 3 | neeqtrri | ⊢ 1o ≠ ∪ { ∅ } |
5 | df1o2 | ⊢ 1o = { ∅ } | |
6 | 5 | unieqi | ⊢ ∪ 1o = ∪ { ∅ } |
7 | 4 6 | neeqtrri | ⊢ 1o ≠ ∪ 1o |
8 | 7 | neii | ⊢ ¬ 1o = ∪ 1o |
9 | simp3 | ⊢ ( ( Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o ) → 1o = ∪ 1o ) | |
10 | 8 9 | mto | ⊢ ¬ ( Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o ) |
11 | df-lim | ⊢ ( Lim 1o ↔ ( Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o ) ) | |
12 | 10 11 | mtbir | ⊢ ¬ Lim 1o |