Step |
Hyp |
Ref |
Expression |
1 |
|
1oex |
⊢ 1o ∈ V |
2 |
1
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
3 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
4 |
2 3
|
eleqtrri |
⊢ 1o ∈ 2o |
5 |
|
1on |
⊢ 1o ∈ On |
6 |
5
|
onirri |
⊢ ¬ 1o ∈ 1o |
7 |
|
eleq2 |
⊢ ( 2o = 1o → ( 1o ∈ 2o ↔ 1o ∈ 1o ) ) |
8 |
6 7
|
mtbiri |
⊢ ( 2o = 1o → ¬ 1o ∈ 2o ) |
9 |
4 8
|
mt2 |
⊢ ¬ 2o = 1o |
10 |
9
|
neir |
⊢ 2o ≠ 1o |
11 |
3
|
unieqi |
⊢ ∪ 2o = ∪ { ∅ , 1o } |
12 |
|
0ex |
⊢ ∅ ∈ V |
13 |
12 1
|
unipr |
⊢ ∪ { ∅ , 1o } = ( ∅ ∪ 1o ) |
14 |
|
0un |
⊢ ( ∅ ∪ 1o ) = 1o |
15 |
11 13 14
|
3eqtri |
⊢ ∪ 2o = 1o |
16 |
10 15
|
neeqtrri |
⊢ 2o ≠ ∪ 2o |
17 |
16
|
neii |
⊢ ¬ 2o = ∪ 2o |
18 |
|
simp3 |
⊢ ( ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o ) → 2o = ∪ 2o ) |
19 |
17 18
|
mto |
⊢ ¬ ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o ) |
20 |
|
df-lim |
⊢ ( Lim 2o ↔ ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o ) ) |
21 |
19 20
|
mtbir |
⊢ ¬ Lim 2o |