Metamath Proof Explorer


Theorem nlim2

Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion nlim2 ¬ Lim 2o

Proof

Step Hyp Ref Expression
1 1oex 1o ∈ V
2 1 prid2 1o ∈ { ∅ , 1o }
3 df2o3 2o = { ∅ , 1o }
4 2 3 eleqtrri 1o ∈ 2o
5 1on 1o ∈ On
6 5 onirri ¬ 1o ∈ 1o
7 eleq2 ( 2o = 1o → ( 1o ∈ 2o ↔ 1o ∈ 1o ) )
8 6 7 mtbiri ( 2o = 1o → ¬ 1o ∈ 2o )
9 4 8 mt2 ¬ 2o = 1o
10 9 neir 2o ≠ 1o
11 3 unieqi 2o = { ∅ , 1o }
12 0ex ∅ ∈ V
13 12 1 unipr { ∅ , 1o } = ( ∅ ∪ 1o )
14 0un ( ∅ ∪ 1o ) = 1o
15 11 13 14 3eqtri 2o = 1o
16 10 15 neeqtrri 2o 2o
17 16 neii ¬ 2o = 2o
18 simp3 ( ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = 2o ) → 2o = 2o )
19 17 18 mto ¬ ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = 2o )
20 df-lim ( Lim 2o ↔ ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = 2o ) )
21 19 20 mtbir ¬ Lim 2o