Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlim2 | ⊢ ¬ Lim 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex | ⊢ 1o ∈ V | |
| 2 | 1 | prid2 | ⊢ 1o ∈ { ∅ , 1o } |
| 3 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 4 | 2 3 | eleqtrri | ⊢ 1o ∈ 2o |
| 5 | 1on | ⊢ 1o ∈ On | |
| 6 | 5 | onirri | ⊢ ¬ 1o ∈ 1o |
| 7 | eleq2 | ⊢ ( 2o = 1o → ( 1o ∈ 2o ↔ 1o ∈ 1o ) ) | |
| 8 | 6 7 | mtbiri | ⊢ ( 2o = 1o → ¬ 1o ∈ 2o ) |
| 9 | 4 8 | mt2 | ⊢ ¬ 2o = 1o |
| 10 | 9 | neir | ⊢ 2o ≠ 1o |
| 11 | 3 | unieqi | ⊢ ∪ 2o = ∪ { ∅ , 1o } |
| 12 | 0ex | ⊢ ∅ ∈ V | |
| 13 | 12 1 | unipr | ⊢ ∪ { ∅ , 1o } = ( ∅ ∪ 1o ) |
| 14 | 0un | ⊢ ( ∅ ∪ 1o ) = 1o | |
| 15 | 11 13 14 | 3eqtri | ⊢ ∪ 2o = 1o |
| 16 | 10 15 | neeqtrri | ⊢ 2o ≠ ∪ 2o |
| 17 | 16 | neii | ⊢ ¬ 2o = ∪ 2o |
| 18 | simp3 | ⊢ ( ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o ) → 2o = ∪ 2o ) | |
| 19 | 17 18 | mto | ⊢ ¬ ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o ) |
| 20 | df-lim | ⊢ ( Lim 2o ↔ ( Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o ) ) | |
| 21 | 19 20 | mtbir | ⊢ ¬ Lim 2o |