| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limord | ⊢ ( Lim  suc  𝐴  →  Ord  suc  𝐴 ) | 
						
							| 2 |  | ordsuc | ⊢ ( Ord  𝐴  ↔  Ord  suc  𝐴 ) | 
						
							| 3 | 1 2 | sylibr | ⊢ ( Lim  suc  𝐴  →  Ord  𝐴 ) | 
						
							| 4 |  | limuni | ⊢ ( Lim  suc  𝐴  →  suc  𝐴  =  ∪  suc  𝐴 ) | 
						
							| 5 |  | ordunisuc | ⊢ ( Ord  𝐴  →  ∪  suc  𝐴  =  𝐴 ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( Ord  𝐴  →  ( suc  𝐴  =  ∪  suc  𝐴  ↔  suc  𝐴  =  𝐴 ) ) | 
						
							| 7 |  | ordirr | ⊢ ( Ord  𝐴  →  ¬  𝐴  ∈  𝐴 ) | 
						
							| 8 |  | eleq2 | ⊢ ( suc  𝐴  =  𝐴  →  ( 𝐴  ∈  suc  𝐴  ↔  𝐴  ∈  𝐴 ) ) | 
						
							| 9 | 8 | notbid | ⊢ ( suc  𝐴  =  𝐴  →  ( ¬  𝐴  ∈  suc  𝐴  ↔  ¬  𝐴  ∈  𝐴 ) ) | 
						
							| 10 | 7 9 | syl5ibrcom | ⊢ ( Ord  𝐴  →  ( suc  𝐴  =  𝐴  →  ¬  𝐴  ∈  suc  𝐴 ) ) | 
						
							| 11 |  | sucidg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  suc  𝐴 ) | 
						
							| 12 | 11 | con3i | ⊢ ( ¬  𝐴  ∈  suc  𝐴  →  ¬  𝐴  ∈  𝑉 ) | 
						
							| 13 | 10 12 | syl6 | ⊢ ( Ord  𝐴  →  ( suc  𝐴  =  𝐴  →  ¬  𝐴  ∈  𝑉 ) ) | 
						
							| 14 | 6 13 | sylbid | ⊢ ( Ord  𝐴  →  ( suc  𝐴  =  ∪  suc  𝐴  →  ¬  𝐴  ∈  𝑉 ) ) | 
						
							| 15 | 3 4 14 | sylc | ⊢ ( Lim  suc  𝐴  →  ¬  𝐴  ∈  𝑉 ) | 
						
							| 16 | 15 | con2i | ⊢ ( 𝐴  ∈  𝑉  →  ¬  Lim  suc  𝐴 ) |