Step |
Hyp |
Ref |
Expression |
1 |
|
llytop |
⊢ ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 → 𝑗 ∈ Top ) |
2 |
|
llyi |
⊢ ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑢 ∈ 𝑗 ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) |
3 |
|
simprr3 |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) |
4 |
|
simprl |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ∈ 𝑗 ) |
5 |
|
ssidd |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ⊆ 𝑢 ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑗 ∈ Locally 𝑛-Locally 𝐴 ) |
7 |
6 1
|
syl |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑗 ∈ Top ) |
8 |
|
restopn2 |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢 ) ) ) |
9 |
7 4 8
|
syl2anc |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢 ) ) ) |
10 |
4 5 9
|
mpbir2and |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ) |
11 |
|
simprr2 |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑦 ∈ 𝑢 ) |
12 |
|
nlly2i |
⊢ ( ( ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ∧ 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ∧ 𝑦 ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) |
13 |
3 10 11 12
|
syl3anc |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) |
14 |
|
restopn2 |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ) ) |
15 |
7 4 14
|
syl2anc |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ) ) |
17 |
7
|
adantr |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑗 ∈ Top ) |
18 |
|
simpr2l |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧 ∈ 𝑗 ) |
19 |
|
simpr31 |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ 𝑧 ) |
20 |
|
opnneip |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑧 ∈ 𝑗 ∧ 𝑦 ∈ 𝑧 ) → 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) |
21 |
17 18 19 20
|
syl3anc |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) |
22 |
|
simpr32 |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑧 ⊆ 𝑣 ) |
23 |
|
simpr1 |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑢 ) |
24 |
23
|
elpwid |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ 𝑢 ) |
25 |
4
|
adantr |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝑗 ) |
26 |
|
elssuni |
⊢ ( 𝑢 ∈ 𝑗 → 𝑢 ⊆ ∪ 𝑗 ) |
27 |
25 26
|
syl |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ ∪ 𝑗 ) |
28 |
24 27
|
sstrd |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ ∪ 𝑗 ) |
29 |
|
eqid |
⊢ ∪ 𝑗 = ∪ 𝑗 |
30 |
29
|
ssnei2 |
⊢ ( ( ( 𝑗 ∈ Top ∧ 𝑧 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) ∧ ( 𝑧 ⊆ 𝑣 ∧ 𝑣 ⊆ ∪ 𝑗 ) ) → 𝑣 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) |
31 |
17 21 22 28 30
|
syl22anc |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ) |
32 |
|
simprr1 |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) |
33 |
32
|
adantr |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) |
34 |
24 33
|
sstrd |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ 𝑥 ) |
35 |
|
velpw |
⊢ ( 𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥 ) |
36 |
34 35
|
sylibr |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑥 ) |
37 |
31 36
|
elind |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ) |
38 |
|
restabs |
⊢ ( ( 𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗 ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) = ( 𝑗 ↾t 𝑣 ) ) |
39 |
17 24 25 38
|
syl3anc |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) = ( 𝑗 ↾t 𝑣 ) ) |
40 |
|
simpr33 |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) |
41 |
39 40
|
eqeltrrd |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
42 |
37 41
|
jca |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝒫 𝑢 ∧ ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
43 |
42
|
3exp2 |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( 𝑣 ∈ 𝒫 𝑢 → ( ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) ) |
44 |
43
|
imp |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( ( 𝑧 ∈ 𝑗 ∧ 𝑧 ⊆ 𝑢 ) → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) |
45 |
16 44
|
sylbid |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) |
46 |
45
|
rexlimdv |
⊢ ( ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) ∧ 𝑣 ∈ 𝒫 𝑢 ) → ( ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
47 |
46
|
expimpd |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( ( 𝑣 ∈ 𝒫 𝑢 ∧ ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
48 |
47
|
reximdv2 |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ( ∃ 𝑣 ∈ 𝒫 𝑢 ∃ 𝑧 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
49 |
13 48
|
mpd |
⊢ ( ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝑛-Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
50 |
2 49
|
rexlimddv |
⊢ ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
51 |
50
|
3expb |
⊢ ( ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
52 |
51
|
ralrimivva |
⊢ ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 → ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
53 |
|
isnlly |
⊢ ( 𝑗 ∈ 𝑛-Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
54 |
1 52 53
|
sylanbrc |
⊢ ( 𝑗 ∈ Locally 𝑛-Locally 𝐴 → 𝑗 ∈ 𝑛-Locally 𝐴 ) |
55 |
54
|
ssriv |
⊢ Locally 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐴 |
56 |
|
nllyrest |
⊢ ( ( 𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝑛-Locally 𝐴 ) |
57 |
56
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ 𝑛-Locally 𝐴 ) |
58 |
|
nllytop |
⊢ ( 𝑗 ∈ 𝑛-Locally 𝐴 → 𝑗 ∈ Top ) |
59 |
58
|
ssriv |
⊢ 𝑛-Locally 𝐴 ⊆ Top |
60 |
59
|
a1i |
⊢ ( ⊤ → 𝑛-Locally 𝐴 ⊆ Top ) |
61 |
57 60
|
restlly |
⊢ ( ⊤ → 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴 ) |
62 |
61
|
mptru |
⊢ 𝑛-Locally 𝐴 ⊆ Locally 𝑛-Locally 𝐴 |
63 |
55 62
|
eqssi |
⊢ Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴 |