Metamath Proof Explorer


Theorem nllyss

Description: The "n-locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyss ( 𝐴𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( ( 𝑗t 𝑢 ) ∈ 𝐴 → ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
2 1 reximdv ( 𝐴𝐵 → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
3 2 ralimdv ( 𝐴𝐵 → ( ∀ 𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 → ∀ 𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
4 3 ralimdv ( 𝐴𝐵 → ( ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 → ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
5 4 anim2d ( 𝐴𝐵 → ( ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 ) → ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 ) ) )
6 isnlly ( 𝑗 ∈ 𝑛-Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 ) )
7 isnlly ( 𝑗 ∈ 𝑛-Locally 𝐵 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
8 5 6 7 3imtr4g ( 𝐴𝐵 → ( 𝑗 ∈ 𝑛-Locally 𝐴𝑗 ∈ 𝑛-Locally 𝐵 ) )
9 8 ssrdv ( 𝐴𝐵 → 𝑛-Locally 𝐴 ⊆ 𝑛-Locally 𝐵 )