| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | eqid | ⊢ ( norm ‘ 𝑊 )  =  ( norm ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 6 |  | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑊 ) )  =  ( norm ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 | 1 2 3 4 5 6 | isnlm | ⊢ ( 𝑊  ∈  NrmMod  ↔  ( ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod  ∧  ( Scalar ‘ 𝑊 )  ∈  NrmRing )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 )  ·  ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) ) | 
						
							| 8 | 7 | simplbi | ⊢ ( 𝑊  ∈  NrmMod  →  ( 𝑊  ∈  NrmGrp  ∧  𝑊  ∈  LMod  ∧  ( Scalar ‘ 𝑊 )  ∈  NrmRing ) ) | 
						
							| 9 | 8 | simp2d | ⊢ ( 𝑊  ∈  NrmMod  →  𝑊  ∈  LMod ) |