| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 2 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 6 |
|
eqid |
⊢ ( norm ‘ ( Scalar ‘ 𝑊 ) ) = ( norm ‘ ( Scalar ‘ 𝑊 ) ) |
| 7 |
1 2 3 4 5 6
|
isnlm |
⊢ ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ NrmRing ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) ) |
| 8 |
7
|
simplbi |
⊢ ( 𝑊 ∈ NrmMod → ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ NrmRing ) ) |
| 9 |
8
|
simp1d |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |