Step |
Hyp |
Ref |
Expression |
1 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
2 |
|
nlmlmod |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) |
3 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
4 |
2 3
|
syl |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ Abel ) |
5 |
|
ngptgp |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ Abel ) → 𝑊 ∈ TopGrp ) |
6 |
1 4 5
|
syl2anc |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopGrp ) |
7 |
|
tgptmd |
⊢ ( 𝑊 ∈ TopGrp → 𝑊 ∈ TopMnd ) |
8 |
6 7
|
syl |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopMnd ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
10 |
9
|
nlmnrg |
⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
11 |
|
nrgtrg |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ NrmRing → ( Scalar ‘ 𝑊 ) ∈ TopRing ) |
12 |
10 11
|
syl |
⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ TopRing ) |
13 |
8 2 12
|
3jca |
⊢ ( 𝑊 ∈ NrmMod → ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ) |
14 |
|
eqid |
⊢ ( ·sf ‘ 𝑊 ) = ( ·sf ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) = ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) |
17 |
9 14 15 16
|
nlmvscn |
⊢ ( 𝑊 ∈ NrmMod → ( ·sf ‘ 𝑊 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) |
18 |
14 15 9 16
|
istlm |
⊢ ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ∧ ( ·sf ‘ 𝑊 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) ) |
19 |
13 17 18
|
sylanbrc |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopMod ) |