Step |
Hyp |
Ref |
Expression |
1 |
|
elni |
⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) ) |
2 |
1
|
simprbi |
⊢ ( 𝐴 ∈ N → 𝐴 ≠ ∅ ) |
3 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
4 |
|
1pi |
⊢ 1o ∈ N |
5 |
|
ltpiord |
⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ N ) → ( 𝐴 <N 1o ↔ 𝐴 ∈ 1o ) ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝐴 ∈ N → ( 𝐴 <N 1o ↔ 𝐴 ∈ 1o ) ) |
7 |
|
df-1o |
⊢ 1o = suc ∅ |
8 |
7
|
eleq2i |
⊢ ( 𝐴 ∈ 1o ↔ 𝐴 ∈ suc ∅ ) |
9 |
|
elsucg |
⊢ ( 𝐴 ∈ N → ( 𝐴 ∈ suc ∅ ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) ) |
10 |
8 9
|
syl5bb |
⊢ ( 𝐴 ∈ N → ( 𝐴 ∈ 1o ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) ) |
11 |
6 10
|
bitrd |
⊢ ( 𝐴 ∈ N → ( 𝐴 <N 1o ↔ ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) ) |
12 |
11
|
biimpa |
⊢ ( ( 𝐴 ∈ N ∧ 𝐴 <N 1o ) → ( 𝐴 ∈ ∅ ∨ 𝐴 = ∅ ) ) |
13 |
12
|
ord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐴 <N 1o ) → ( ¬ 𝐴 ∈ ∅ → 𝐴 = ∅ ) ) |
14 |
3 13
|
mpi |
⊢ ( ( 𝐴 ∈ N ∧ 𝐴 <N 1o ) → 𝐴 = ∅ ) |
15 |
14
|
ex |
⊢ ( 𝐴 ∈ N → ( 𝐴 <N 1o → 𝐴 = ∅ ) ) |
16 |
15
|
necon3ad |
⊢ ( 𝐴 ∈ N → ( 𝐴 ≠ ∅ → ¬ 𝐴 <N 1o ) ) |
17 |
2 16
|
mpd |
⊢ ( 𝐴 ∈ N → ¬ 𝐴 <N 1o ) |
18 |
|
ltrelpi |
⊢ <N ⊆ ( N × N ) |
19 |
18
|
brel |
⊢ ( 𝐴 <N 1o → ( 𝐴 ∈ N ∧ 1o ∈ N ) ) |
20 |
19
|
simpld |
⊢ ( 𝐴 <N 1o → 𝐴 ∈ N ) |
21 |
20
|
con3i |
⊢ ( ¬ 𝐴 ∈ N → ¬ 𝐴 <N 1o ) |
22 |
17 21
|
pm2.61i |
⊢ ¬ 𝐴 <N 1o |