Metamath Proof Explorer


Theorem nm0

Description: Norm of the identity element. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nm0.n 𝑁 = ( norm ‘ 𝐺 )
nm0.z 0 = ( 0g𝐺 )
Assertion nm0 ( 𝐺 ∈ NrmGrp → ( 𝑁0 ) = 0 )

Proof

Step Hyp Ref Expression
1 nm0.n 𝑁 = ( norm ‘ 𝐺 )
2 nm0.z 0 = ( 0g𝐺 )
3 eqid 0 = 0
4 ngpgrp ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp )
5 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
6 5 2 grpidcl ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) )
7 4 6 syl ( 𝐺 ∈ NrmGrp → 0 ∈ ( Base ‘ 𝐺 ) )
8 5 1 2 nmeq0 ( ( 𝐺 ∈ NrmGrp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑁0 ) = 0 ↔ 0 = 0 ) )
9 7 8 mpdan ( 𝐺 ∈ NrmGrp → ( ( 𝑁0 ) = 0 ↔ 0 = 0 ) )
10 3 9 mpbiri ( 𝐺 ∈ NrmGrp → ( 𝑁0 ) = 0 )