Description: Norm of the identity element. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nm0.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
nm0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
Assertion | nm0 | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑁 ‘ 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nm0.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
2 | nm0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
3 | eqid | ⊢ 0 = 0 | |
4 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
6 | 5 2 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
7 | 4 6 | syl | ⊢ ( 𝐺 ∈ NrmGrp → 0 ∈ ( Base ‘ 𝐺 ) ) |
8 | 5 1 2 | nmeq0 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑁 ‘ 0 ) = 0 ↔ 0 = 0 ) ) |
9 | 7 8 | mpdan | ⊢ ( 𝐺 ∈ NrmGrp → ( ( 𝑁 ‘ 0 ) = 0 ↔ 0 = 0 ) ) |
10 | 3 9 | mpbiri | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑁 ‘ 0 ) = 0 ) |