Step |
Hyp |
Ref |
Expression |
1 |
|
nmbdfnlb.1 |
⊢ ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) |
2 |
|
fveq2 |
⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ 0ℎ ) ) |
3 |
1
|
simpli |
⊢ 𝑇 ∈ LinFn |
4 |
3
|
lnfn0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
5 |
2 4
|
eqtrdi |
⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = 0 ) |
6 |
5
|
abs00bd |
⊢ ( 𝐴 = 0ℎ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = 0 ) |
7 |
|
0le0 |
⊢ 0 ≤ 0 |
8 |
|
fveq2 |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ 0ℎ ) ) |
9 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
10 |
8 9
|
eqtrdi |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = 0 ) |
11 |
10
|
oveq2d |
⊢ ( 𝐴 = 0ℎ → ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normfn ‘ 𝑇 ) · 0 ) ) |
12 |
1
|
simpri |
⊢ ( normfn ‘ 𝑇 ) ∈ ℝ |
13 |
12
|
recni |
⊢ ( normfn ‘ 𝑇 ) ∈ ℂ |
14 |
13
|
mul01i |
⊢ ( ( normfn ‘ 𝑇 ) · 0 ) = 0 |
15 |
11 14
|
eqtr2di |
⊢ ( 𝐴 = 0ℎ → 0 = ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
16 |
7 15
|
breqtrid |
⊢ ( 𝐴 = 0ℎ → 0 ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
17 |
6 16
|
eqbrtrd |
⊢ ( 𝐴 = 0ℎ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
19 |
3
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
20 |
19
|
ffvelrni |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
21 |
20
|
abscld |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ ) |
24 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
27 |
|
normne0 |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) |
28 |
27
|
biimpar |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
29 |
23 26 28
|
divrec2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
30 |
25 28
|
rereccld |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
31 |
30
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
32 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 𝐴 ∈ ℋ ) |
33 |
3
|
lnfnmuli |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) |
34 |
31 32 33
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) |
35 |
34
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( abs ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) ) |
36 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
37 |
31 36
|
absmuld |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
38 |
|
normgt0 |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
39 |
38
|
biimpa |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
40 |
25 39
|
recgt0d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
41 |
|
0re |
⊢ 0 ∈ ℝ |
42 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
43 |
41 42
|
mpan |
⊢ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
44 |
30 40 43
|
sylc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
45 |
30 44
|
absidd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) = ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
46 |
45
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
47 |
35 37 46
|
3eqtrrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
48 |
29 47
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
49 |
|
hvmulcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
50 |
31 32 49
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
51 |
|
normcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
52 |
50 51
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
53 |
|
norm1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) |
54 |
|
eqle |
⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
55 |
52 53 54
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
56 |
|
nmfnlb |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
57 |
19 56
|
mp3an1 |
⊢ ( ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
58 |
50 55 57
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
59 |
48 58
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ) |
60 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
61 |
|
ledivmul2 |
⊢ ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
62 |
22 60 25 39 61
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
63 |
59 62
|
mpbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
64 |
18 63
|
pm2.61dane |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |