Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( 𝑇 ‘ 𝐴 ) = ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( normop ‘ 𝑇 ) = ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) · ( normℎ ‘ 𝐴 ) ) ) |
5 |
2 4
|
breq12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) · ( normℎ ‘ 𝐴 ) ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) · ( normℎ ‘ 𝐴 ) ) ) ) ) |
7 |
|
0bdop |
⊢ 0hop ∈ BndLinOp |
8 |
7
|
elimel |
⊢ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ∈ BndLinOp |
9 |
8
|
nmbdoplbi |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) · ( normℎ ‘ 𝐴 ) ) ) |
10 |
6 9
|
dedth |
⊢ ( 𝑇 ∈ BndLinOp → ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
11 |
10
|
imp |
⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |