Step |
Hyp |
Ref |
Expression |
1 |
|
nmbdoplb.1 |
⊢ 𝑇 ∈ BndLinOp |
2 |
|
fveq2 |
⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ 0ℎ ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ 0ℎ ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝐴 = 0ℎ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 0ℎ ) ) ) |
6 |
3 5
|
breq12d |
⊢ ( 𝐴 = 0ℎ → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 0ℎ ) ) ) ) |
7 |
|
bdopln |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) |
8 |
1 7
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
9 |
8
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
10 |
9
|
ffvelrni |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
11 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
12 |
10 11
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ ) |
15 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
18 |
|
normne0 |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
20 |
14 17 19
|
divrec2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
21 |
16 19
|
rereccld |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
23 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 𝐴 ∈ ℋ ) |
24 |
8
|
lnopmuli |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
25 |
22 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) |
27 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
28 |
|
norm-iii |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
29 |
22 27 28
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
30 |
|
normgt0 |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
31 |
30
|
biimpa |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
32 |
16 31
|
recgt0d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
33 |
|
0re |
⊢ 0 ∈ ℝ |
34 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
35 |
33 34
|
mpan |
⊢ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
36 |
21 32 35
|
sylc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
37 |
21 36
|
absidd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) = ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
39 |
26 29 38
|
3eqtrrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
40 |
20 39
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
41 |
|
hvmulcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
42 |
22 23 41
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
43 |
|
normcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
44 |
42 43
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
45 |
|
norm1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) |
46 |
|
eqle |
⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
47 |
44 45 46
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
48 |
|
nmoplb |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) |
49 |
9 48
|
mp3an1 |
⊢ ( ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) |
50 |
42 47 49
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) |
51 |
40 50
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ) |
52 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
53 |
1 52
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
54 |
53
|
a1i |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
55 |
|
ledivmul2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
56 |
13 54 16 31 55
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
57 |
51 56
|
mpbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
58 |
|
0le0 |
⊢ 0 ≤ 0 |
59 |
8
|
lnop0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0ℎ |
60 |
59
|
fveq2i |
⊢ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ 0ℎ ) |
61 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
62 |
60 61
|
eqtri |
⊢ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = 0 |
63 |
61
|
oveq2i |
⊢ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 0ℎ ) ) = ( ( normop ‘ 𝑇 ) · 0 ) |
64 |
53
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
65 |
64
|
mul01i |
⊢ ( ( normop ‘ 𝑇 ) · 0 ) = 0 |
66 |
63 65
|
eqtri |
⊢ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 0ℎ ) ) = 0 |
67 |
58 62 66
|
3brtr4i |
⊢ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 0ℎ ) ) |
68 |
67
|
a1i |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 0ℎ ) ) ) |
69 |
6 57 68
|
pm2.61ne |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |