| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmcex.1 |
⊢ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) |
| 2 |
|
nmcex.2 |
⊢ ( 𝑆 ‘ 𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) |
| 3 |
|
nmcex.3 |
⊢ ( 𝑥 ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 4 |
|
nmcex.4 |
⊢ ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) = 0 |
| 5 |
|
nmcex.5 |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) ) |
| 6 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑚 ∈ ℝ ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 7 |
3 6
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℋ → ( 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → 𝑚 ∈ ℝ ) ) |
| 8 |
7
|
imp |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑚 ∈ ℝ ) |
| 9 |
8
|
adantrl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) → 𝑚 ∈ ℝ ) |
| 10 |
9
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑚 ∈ ℝ ) |
| 11 |
10
|
abssi |
⊢ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ |
| 12 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 13 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
| 14 |
|
0le1 |
⊢ 0 ≤ 1 |
| 15 |
13 14
|
eqbrtri |
⊢ ( normℎ ‘ 0ℎ ) ≤ 1 |
| 16 |
4
|
eqcomi |
⊢ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) |
| 17 |
15 16
|
pm3.2i |
⊢ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = 0ℎ → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 0ℎ ) ) |
| 19 |
18
|
breq1d |
⊢ ( 𝑥 = 0ℎ → ( ( normℎ ‘ 𝑥 ) ≤ 1 ↔ ( normℎ ‘ 0ℎ ) ≤ 1 ) ) |
| 20 |
|
2fveq3 |
⊢ ( 𝑥 = 0ℎ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) |
| 21 |
20
|
eqeq2d |
⊢ ( 𝑥 = 0ℎ → ( 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) |
| 22 |
19 21
|
anbi12d |
⊢ ( 𝑥 = 0ℎ → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) ) |
| 23 |
22
|
rspcev |
⊢ ( ( 0ℎ ∈ ℋ ∧ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) → ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 24 |
12 17 23
|
mp2an |
⊢ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 25 |
|
c0ex |
⊢ 0 ∈ V |
| 26 |
|
eqeq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 27 |
26
|
anbi2d |
⊢ ( 𝑚 = 0 → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 28 |
27
|
rexbidv |
⊢ ( 𝑚 = 0 → ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 29 |
25 28
|
elab |
⊢ ( 0 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ↔ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 30 |
24 29
|
mpbir |
⊢ 0 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } |
| 31 |
30
|
ne0ii |
⊢ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ≠ ∅ |
| 32 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 33 |
|
rpdivcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 2 / 𝑦 ) ∈ ℝ+ ) |
| 34 |
32 33
|
mpan |
⊢ ( 𝑦 ∈ ℝ+ → ( 2 / 𝑦 ) ∈ ℝ+ ) |
| 35 |
34
|
rpred |
⊢ ( 𝑦 ∈ ℝ+ → ( 2 / 𝑦 ) ∈ ℝ ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ( 2 / 𝑦 ) ∈ ℝ ) |
| 37 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → 𝑦 ∈ ℝ ) |
| 39 |
38
|
rehalfcld |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 40 |
39
|
recnd |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑦 / 2 ) ∈ ℂ ) |
| 41 |
|
simprl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → 𝑥 ∈ ℋ ) |
| 42 |
|
hvmulcl |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ∈ ℋ ) |
| 43 |
40 41 42
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ∈ ℋ ) |
| 44 |
|
normcl |
⊢ ( ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ∈ ℝ ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ∈ ℝ ) |
| 46 |
|
simprr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ 𝑥 ) ≤ 1 ) |
| 47 |
|
normcl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 48 |
47
|
ad2antrl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 49 |
|
1red |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → 1 ∈ ℝ ) |
| 50 |
|
rphalfcl |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 52 |
48 49 51
|
lemul2d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 ↔ ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( 𝑦 / 2 ) · 1 ) ) ) |
| 53 |
46 52
|
mpbid |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( 𝑦 / 2 ) · 1 ) ) |
| 54 |
|
rpcn |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℂ ) |
| 55 |
|
norm-iii |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) = ( ( abs ‘ ( 𝑦 / 2 ) ) · ( normℎ ‘ 𝑥 ) ) ) |
| 56 |
54 55
|
sylan |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) = ( ( abs ‘ ( 𝑦 / 2 ) ) · ( normℎ ‘ 𝑥 ) ) ) |
| 57 |
|
rpre |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ ) |
| 58 |
|
rpge0 |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → 0 ≤ ( 𝑦 / 2 ) ) |
| 59 |
57 58
|
absidd |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( abs ‘ ( 𝑦 / 2 ) ) = ( 𝑦 / 2 ) ) |
| 60 |
59
|
oveq1d |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( ( abs ‘ ( 𝑦 / 2 ) ) · ( normℎ ‘ 𝑥 ) ) = ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 𝑦 / 2 ) ) · ( normℎ ‘ 𝑥 ) ) = ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 62 |
56 61
|
eqtr2d |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) = ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) |
| 63 |
51 41 62
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) = ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) |
| 64 |
40
|
mulridd |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) · 1 ) = ( 𝑦 / 2 ) ) |
| 65 |
53 63 64
|
3brtr3d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ≤ ( 𝑦 / 2 ) ) |
| 66 |
|
rphalflt |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) < 𝑦 ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑦 / 2 ) < 𝑦 ) |
| 68 |
45 39 38 65 67
|
lelttrd |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 ) |
| 69 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( normℎ ‘ 𝑧 ) = ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) |
| 70 |
69
|
breq1d |
⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( ( normℎ ‘ 𝑧 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 ) ) |
| 71 |
|
2fveq3 |
⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) ) |
| 72 |
71
|
breq1d |
⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) |
| 73 |
70 72
|
imbi12d |
⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ↔ ( ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) ) |
| 74 |
73
|
rspcv |
⊢ ( ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ∈ ℋ → ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ( ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) ) |
| 75 |
43 74
|
syl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ( ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) ) |
| 76 |
68 75
|
mpid |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) |
| 77 |
3
|
ad2antrl |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 78 |
77 49 51
|
ltmuldiv2d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) < 1 ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) < ( 1 / ( 𝑦 / 2 ) ) ) ) |
| 79 |
51
|
rprecred |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 1 / ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 80 |
|
ltle |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 1 / ( 𝑦 / 2 ) ) ∈ ℝ ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) < ( 1 / ( 𝑦 / 2 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 / ( 𝑦 / 2 ) ) ) ) |
| 81 |
77 79 80
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) < ( 1 / ( 𝑦 / 2 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 / ( 𝑦 / 2 ) ) ) ) |
| 82 |
78 81
|
sylbid |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) < 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 / ( 𝑦 / 2 ) ) ) ) |
| 83 |
51 41 5
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) ) |
| 84 |
83
|
breq1d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) < 1 ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) |
| 85 |
|
rpcn |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) |
| 86 |
|
rpne0 |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ≠ 0 ) |
| 87 |
|
2cn |
⊢ 2 ∈ ℂ |
| 88 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 89 |
|
recdiv |
⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 1 / ( 𝑦 / 2 ) ) = ( 2 / 𝑦 ) ) |
| 90 |
87 88 89
|
mpanr12 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / ( 𝑦 / 2 ) ) = ( 2 / 𝑦 ) ) |
| 91 |
85 86 90
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ+ → ( 1 / ( 𝑦 / 2 ) ) = ( 2 / 𝑦 ) ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 1 / ( 𝑦 / 2 ) ) = ( 2 / 𝑦 ) ) |
| 93 |
92
|
breq2d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 / ( 𝑦 / 2 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) ) |
| 94 |
82 84 93
|
3imtr3d |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) ) |
| 95 |
76 94
|
syld |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) ) |
| 96 |
95
|
imp |
⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) |
| 97 |
96
|
an32s |
⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) |
| 98 |
97
|
anassrs |
⊢ ( ( ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) |
| 99 |
|
breq1 |
⊢ ( 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑛 ≤ ( 2 / 𝑦 ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) ) |
| 100 |
98 99
|
syl5ibrcom |
⊢ ( ( ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 101 |
100
|
expimpd |
⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 102 |
101
|
rexlimdva |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 103 |
102
|
alrimiv |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 104 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 105 |
104
|
anbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 106 |
105
|
rexbidv |
⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 107 |
106
|
ralab |
⊢ ( ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ↔ ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑧 ) ) |
| 108 |
|
breq2 |
⊢ ( 𝑧 = ( 2 / 𝑦 ) → ( 𝑛 ≤ 𝑧 ↔ 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 109 |
108
|
imbi2d |
⊢ ( 𝑧 = ( 2 / 𝑦 ) → ( ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑧 ) ↔ ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) ) |
| 110 |
109
|
albidv |
⊢ ( 𝑧 = ( 2 / 𝑦 ) → ( ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑧 ) ↔ ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) ) |
| 111 |
107 110
|
bitrid |
⊢ ( 𝑧 = ( 2 / 𝑦 ) → ( ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ↔ ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) ) |
| 112 |
111
|
rspcev |
⊢ ( ( ( 2 / 𝑦 ) ∈ ℝ ∧ ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) |
| 113 |
36 103 112
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) |
| 114 |
113
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) |
| 115 |
1 114
|
ax-mp |
⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 |
| 116 |
|
supxrre |
⊢ ( ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ∧ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) → sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) ) |
| 117 |
11 31 115 116
|
mp3an |
⊢ sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) |
| 118 |
2 117
|
eqtri |
⊢ ( 𝑆 ‘ 𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) |
| 119 |
|
suprcl |
⊢ ( ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ∧ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) → sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) ∈ ℝ ) |
| 120 |
11 31 115 119
|
mp3an |
⊢ sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) ∈ ℝ |
| 121 |
118 120
|
eqeltri |
⊢ ( 𝑆 ‘ 𝑇 ) ∈ ℝ |