Metamath Proof Explorer


Theorem nmcfnex

Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcfnex ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn𝑇 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 elin ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) )
2 fveq2 ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( normfn𝑇 ) = ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) )
3 2 eleq1d ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( normfn𝑇 ) ∈ ℝ ↔ ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ ) )
4 0lnfn ( ℋ × { 0 } ) ∈ LinFn
5 0cnfn ( ℋ × { 0 } ) ∈ ContFn
6 elin ( ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) ↔ ( ( ℋ × { 0 } ) ∈ LinFn ∧ ( ℋ × { 0 } ) ∈ ContFn ) )
7 4 5 6 mpbir2an ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn )
8 7 elimel if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn )
9 elin ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) ↔ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ) )
10 8 9 mpbi ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn )
11 10 simpli if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn
12 10 simpri if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn
13 11 12 nmcfnexi ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ
14 3 13 dedth ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( normfn𝑇 ) ∈ ℝ )
15 1 14 sylbir ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn𝑇 ) ∈ ℝ )