| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ) |
| 2 |
|
fveq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 𝐴 ) = ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( normfn ‘ 𝑇 ) = ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 6 |
3 5
|
breq12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( abs ‘ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ ℋ → ( abs ‘ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) ) |
| 8 |
|
0lnfn |
⊢ ( ℋ × { 0 } ) ∈ LinFn |
| 9 |
|
0cnfn |
⊢ ( ℋ × { 0 } ) ∈ ContFn |
| 10 |
|
elin |
⊢ ( ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) ↔ ( ( ℋ × { 0 } ) ∈ LinFn ∧ ( ℋ × { 0 } ) ∈ ContFn ) ) |
| 11 |
8 9 10
|
mpbir2an |
⊢ ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) |
| 12 |
11
|
elimel |
⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) |
| 13 |
|
elin |
⊢ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) ↔ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ) ) |
| 14 |
12 13
|
mpbi |
⊢ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ) |
| 15 |
14
|
simpli |
⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
| 16 |
14
|
simpri |
⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn |
| 17 |
15 16
|
nmcfnlbi |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 18 |
7 17
|
dedth |
⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 19 |
18
|
imp |
⊢ ( ( 𝑇 ∈ ( LinFn ∩ ContFn ) ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 20 |
1 19
|
sylanbr |
⊢ ( ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 21 |
20
|
3impa |
⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |