Step |
Hyp |
Ref |
Expression |
1 |
|
nmcfnex.1 |
⊢ 𝑇 ∈ LinFn |
2 |
|
nmcfnex.2 |
⊢ 𝑇 ∈ ContFn |
3 |
|
fveq2 |
⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ 0ℎ ) ) |
4 |
1
|
lnfn0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
5 |
3 4
|
eqtrdi |
⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = 0 ) |
6 |
5
|
abs00bd |
⊢ ( 𝐴 = 0ℎ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = 0 ) |
7 |
|
0le0 |
⊢ 0 ≤ 0 |
8 |
|
fveq2 |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ 0ℎ ) ) |
9 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
10 |
8 9
|
eqtrdi |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = 0 ) |
11 |
10
|
oveq2d |
⊢ ( 𝐴 = 0ℎ → ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normfn ‘ 𝑇 ) · 0 ) ) |
12 |
1 2
|
nmcfnexi |
⊢ ( normfn ‘ 𝑇 ) ∈ ℝ |
13 |
12
|
recni |
⊢ ( normfn ‘ 𝑇 ) ∈ ℂ |
14 |
13
|
mul01i |
⊢ ( ( normfn ‘ 𝑇 ) · 0 ) = 0 |
15 |
11 14
|
eqtr2di |
⊢ ( 𝐴 = 0ℎ → 0 = ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
16 |
7 15
|
breqtrid |
⊢ ( 𝐴 = 0ℎ → 0 ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
17 |
6 16
|
eqbrtrd |
⊢ ( 𝐴 = 0ℎ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
19 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
20 |
19
|
ffvelrni |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
21 |
20
|
abscld |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ ) |
24 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
27 |
|
norm-i |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) |
28 |
27
|
notbid |
⊢ ( 𝐴 ∈ ℋ → ( ¬ ( normℎ ‘ 𝐴 ) = 0 ↔ ¬ 𝐴 = 0ℎ ) ) |
29 |
28
|
biimpar |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ¬ ( normℎ ‘ 𝐴 ) = 0 ) |
30 |
29
|
neqned |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
31 |
23 26 30
|
divrec2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
32 |
25 30
|
rereccld |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
33 |
32
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
34 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 𝐴 ∈ ℋ ) |
35 |
1
|
lnfnmuli |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) |
37 |
36
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( abs ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) ) |
38 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
39 |
33 38
|
absmuld |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
40 |
|
df-ne |
⊢ ( 𝐴 ≠ 0ℎ ↔ ¬ 𝐴 = 0ℎ ) |
41 |
|
normgt0 |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
42 |
40 41
|
bitr3id |
⊢ ( 𝐴 ∈ ℋ → ( ¬ 𝐴 = 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
43 |
42
|
biimpa |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
44 |
25 43
|
recgt0d |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
45 |
|
0re |
⊢ 0 ∈ ℝ |
46 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
47 |
45 46
|
mpan |
⊢ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
48 |
32 44 47
|
sylc |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
49 |
32 48
|
absidd |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) = ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
50 |
49
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
51 |
37 39 50
|
3eqtrrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
52 |
31 51
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
53 |
|
hvmulcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
54 |
33 34 53
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
55 |
|
normcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
56 |
54 55
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
57 |
|
norm1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) |
58 |
40 57
|
sylan2br |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) |
59 |
|
eqle |
⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
60 |
56 58 59
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
61 |
|
nmfnlb |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
62 |
19 61
|
mp3an1 |
⊢ ( ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
63 |
54 60 62
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
64 |
52 63
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ) |
65 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
66 |
|
ledivmul2 |
⊢ ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
67 |
22 65 25 43 66
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
68 |
64 67
|
mpbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
69 |
18 68
|
pm2.61dan |
⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |