Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ) |
2 |
|
fveq2 |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( normop ‘ 𝑇 ) = ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ∈ ℝ ) ) |
4 |
|
idlnop |
⊢ ( I ↾ ℋ ) ∈ LinOp |
5 |
|
idcnop |
⊢ ( I ↾ ℋ ) ∈ ContOp |
6 |
|
elin |
⊢ ( ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) ↔ ( ( I ↾ ℋ ) ∈ LinOp ∧ ( I ↾ ℋ ) ∈ ContOp ) ) |
7 |
4 5 6
|
mpbir2an |
⊢ ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) |
8 |
7
|
elimel |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) |
9 |
|
elin |
⊢ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) ↔ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) ) |
10 |
8 9
|
mpbi |
⊢ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) |
11 |
10
|
simpli |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp |
12 |
10
|
simpri |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp |
13 |
11 12
|
nmcopexi |
⊢ ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ∈ ℝ |
14 |
3 13
|
dedth |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
15 |
1 14
|
sylbir |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |