Metamath Proof Explorer


Theorem nmcopex

Description: The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcopex ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop𝑇 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 elin ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) )
2 fveq2 ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( normop𝑇 ) = ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) )
3 2 eleq1d ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normop𝑇 ) ∈ ℝ ↔ ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ∈ ℝ ) )
4 idlnop ( I ↾ ℋ ) ∈ LinOp
5 idcnop ( I ↾ ℋ ) ∈ ContOp
6 elin ( ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) ↔ ( ( I ↾ ℋ ) ∈ LinOp ∧ ( I ↾ ℋ ) ∈ ContOp ) )
7 4 5 6 mpbir2an ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp )
8 7 elimel if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp )
9 elin ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) ↔ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) )
10 8 9 mpbi ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp )
11 10 simpli if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp
12 10 simpri if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp
13 11 12 nmcopexi ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ∈ ℝ
14 3 13 dedth ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ( normop𝑇 ) ∈ ℝ )
15 1 14 sylbir ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop𝑇 ) ∈ ℝ )