| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( normop ‘ 𝑇 ) = ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ) |
| 3 |
2
|
eleq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ∈ ℝ ) ) |
| 4 |
|
idlnop |
⊢ ( I ↾ ℋ ) ∈ LinOp |
| 5 |
|
idcnop |
⊢ ( I ↾ ℋ ) ∈ ContOp |
| 6 |
|
elin |
⊢ ( ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) ↔ ( ( I ↾ ℋ ) ∈ LinOp ∧ ( I ↾ ℋ ) ∈ ContOp ) ) |
| 7 |
4 5 6
|
mpbir2an |
⊢ ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) |
| 8 |
7
|
elimel |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) |
| 9 |
|
elin |
⊢ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) ↔ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) ) |
| 10 |
8 9
|
mpbi |
⊢ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) |
| 11 |
10
|
simpli |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp |
| 12 |
10
|
simpri |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp |
| 13 |
11 12
|
nmcopexi |
⊢ ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ∈ ℝ |
| 14 |
3 13
|
dedth |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 15 |
1 14
|
sylbir |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |