Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ) |
2 |
|
fveq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ‘ 𝐴 ) = ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( normop ‘ 𝑇 ) = ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
6 |
3 5
|
breq12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) ) |
8 |
|
idlnop |
⊢ ( I ↾ ℋ ) ∈ LinOp |
9 |
|
idcnop |
⊢ ( I ↾ ℋ ) ∈ ContOp |
10 |
|
elin |
⊢ ( ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) ↔ ( ( I ↾ ℋ ) ∈ LinOp ∧ ( I ↾ ℋ ) ∈ ContOp ) ) |
11 |
8 9 10
|
mpbir2an |
⊢ ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) |
12 |
11
|
elimel |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) |
13 |
|
elin |
⊢ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) ↔ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) ) |
14 |
12 13
|
mpbi |
⊢ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) |
15 |
14
|
simpli |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp |
16 |
14
|
simpri |
⊢ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp |
17 |
15 16
|
nmcoplbi |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
18 |
7 17
|
dedth |
⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
19 |
18
|
imp |
⊢ ( ( 𝑇 ∈ ( LinOp ∩ ContOp ) ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
20 |
1 19
|
sylanbr |
⊢ ( ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
21 |
20
|
3impa |
⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |