Metamath Proof Explorer


Theorem nmcoplb

Description: A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcoplb ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ) → ( norm ‘ ( 𝑇𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) )
2 fveq1 ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇𝐴 ) = ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) )
3 2 fveq2d ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( norm ‘ ( 𝑇𝐴 ) ) = ( norm ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) )
4 fveq2 ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( normop𝑇 ) = ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) )
5 4 oveq1d ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( normop𝑇 ) · ( norm𝐴 ) ) = ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( norm𝐴 ) ) )
6 3 5 breq12d ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( norm ‘ ( 𝑇𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) ↔ ( norm ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( norm𝐴 ) ) ) )
7 6 imbi2d ( 𝑇 = if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝐴 ∈ ℋ → ( norm ‘ ( 𝑇𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) ) ↔ ( 𝐴 ∈ ℋ → ( norm ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( norm𝐴 ) ) ) ) )
8 idlnop ( I ↾ ℋ ) ∈ LinOp
9 idcnop ( I ↾ ℋ ) ∈ ContOp
10 elin ( ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp ) ↔ ( ( I ↾ ℋ ) ∈ LinOp ∧ ( I ↾ ℋ ) ∈ ContOp ) )
11 8 9 10 mpbir2an ( I ↾ ℋ ) ∈ ( LinOp ∩ ContOp )
12 11 elimel if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp )
13 elin ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ( LinOp ∩ ContOp ) ↔ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp ) )
14 12 13 mpbi ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp )
15 14 simpli if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp
16 14 simpri if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ∈ ContOp
17 15 16 nmcoplbi ( 𝐴 ∈ ℋ → ( norm ‘ ( if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ ( LinOp ∩ ContOp ) , 𝑇 , ( I ↾ ℋ ) ) ) · ( norm𝐴 ) ) )
18 7 17 dedth ( 𝑇 ∈ ( LinOp ∩ ContOp ) → ( 𝐴 ∈ ℋ → ( norm ‘ ( 𝑇𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) ) )
19 18 imp ( ( 𝑇 ∈ ( LinOp ∩ ContOp ) ∧ 𝐴 ∈ ℋ ) → ( norm ‘ ( 𝑇𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) )
20 1 19 sylanbr ( ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ∧ 𝐴 ∈ ℋ ) → ( norm ‘ ( 𝑇𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) )
21 20 3impa ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ) → ( norm ‘ ( 𝑇𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) )