Step |
Hyp |
Ref |
Expression |
1 |
|
nmcopex.1 |
⊢ 𝑇 ∈ LinOp |
2 |
|
nmcopex.2 |
⊢ 𝑇 ∈ ContOp |
3 |
|
0le0 |
⊢ 0 ≤ 0 |
4 |
3
|
a1i |
⊢ ( 𝐴 = 0ℎ → 0 ≤ 0 ) |
5 |
|
fveq2 |
⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ 0ℎ ) ) |
6 |
1
|
lnop0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0ℎ |
7 |
5 6
|
eqtrdi |
⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = 0ℎ ) |
8 |
7
|
fveq2d |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ 0ℎ ) ) |
9 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
10 |
8 9
|
eqtrdi |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = 0 ) |
11 |
|
fveq2 |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ 0ℎ ) ) |
12 |
11 9
|
eqtrdi |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = 0 ) |
13 |
12
|
oveq2d |
⊢ ( 𝐴 = 0ℎ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normop ‘ 𝑇 ) · 0 ) ) |
14 |
1 2
|
nmcopexi |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
15 |
14
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
16 |
15
|
mul01i |
⊢ ( ( normop ‘ 𝑇 ) · 0 ) = 0 |
17 |
13 16
|
eqtrdi |
⊢ ( 𝐴 = 0ℎ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = 0 ) |
18 |
4 10 17
|
3brtr4d |
⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
20 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
22 |
|
normne0 |
⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0ℎ ) ) |
23 |
22
|
biimpar |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
24 |
21 23
|
rereccld |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
25 |
|
normgt0 |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
26 |
25
|
biimpa |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
27 |
21 26
|
recgt0d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
28 |
|
0re |
⊢ 0 ∈ ℝ |
29 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
30 |
28 29
|
mpan |
⊢ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
31 |
24 27 30
|
sylc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
32 |
24 31
|
absidd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) = ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
33 |
32
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
34 |
24
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
35 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 𝐴 ∈ ℋ ) |
36 |
1
|
lnopmuli |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
37 |
34 35 36
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) ) |
39 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
40 |
39
|
ffvelrni |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
41 |
40
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
42 |
|
norm-iii |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
43 |
34 41 42
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
44 |
38 43
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
45 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
46 |
40 45
|
syl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
47 |
46
|
adantr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
48 |
47
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ ) |
49 |
21
|
recnd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
50 |
48 49 23
|
divrec2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
51 |
33 44 50
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
52 |
|
hvmulcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
53 |
34 35 52
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
54 |
|
normcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
55 |
53 54
|
syl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
56 |
|
norm1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) |
57 |
|
eqle |
⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
58 |
55 56 57
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
59 |
|
nmoplb |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) |
60 |
39 59
|
mp3an1 |
⊢ ( ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) |
61 |
53 58 60
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normop ‘ 𝑇 ) ) |
62 |
51 61
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ) |
63 |
14
|
a1i |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
64 |
|
ledivmul2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
65 |
47 63 21 26 64
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
66 |
62 65
|
mpbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
67 |
19 66
|
pm2.61dane |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |