| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | nmf.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 3 |  | nmeq0.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 5 | 2 1 3 4 | nmval | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 ( dist ‘ 𝐺 )  0  ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 ( dist ‘ 𝐺 )  0  ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 )  =  0  ↔  ( 𝐴 ( dist ‘ 𝐺 )  0  )  =  0 ) ) | 
						
							| 8 |  | ngpgrp | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  Grp ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 10 | 1 3 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →   0   ∈  𝑋 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →   0   ∈  𝑋 ) | 
						
							| 12 |  | ngpxms | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  ∞MetSp ) | 
						
							| 13 | 1 4 | xmseq0 | ⊢ ( ( 𝐺  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧   0   ∈  𝑋 )  →  ( ( 𝐴 ( dist ‘ 𝐺 )  0  )  =  0  ↔  𝐴  =   0  ) ) | 
						
							| 14 | 12 13 | syl3an1 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧   0   ∈  𝑋 )  →  ( ( 𝐴 ( dist ‘ 𝐺 )  0  )  =  0  ↔  𝐴  =   0  ) ) | 
						
							| 15 | 11 14 | mpd3an3 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐴 ( dist ‘ 𝐺 )  0  )  =  0  ↔  𝐴  =   0  ) ) | 
						
							| 16 | 7 15 | bitrd | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 )  =  0  ↔  𝐴  =   0  ) ) |