Step |
Hyp |
Ref |
Expression |
1 |
|
nmf2.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
2 |
|
nmf2.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
3 |
|
nmf2.d |
⊢ 𝐷 = ( dist ‘ 𝑊 ) |
4 |
|
nmf2.e |
⊢ 𝐸 = ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
6 |
1 2 5 3 4
|
nmfval2 |
⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ) → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ) ) |
8 |
2 5
|
grpidcl |
⊢ ( 𝑊 ∈ Grp → ( 0g ‘ 𝑊 ) ∈ 𝑋 ) |
9 |
|
metcl |
⊢ ( ( 𝐸 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑋 ) → ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ∈ ℝ ) |
10 |
9
|
3comr |
⊢ ( ( ( 0g ‘ 𝑊 ) ∈ 𝑋 ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ∈ ℝ ) |
11 |
8 10
|
syl3an1 |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ∈ ℝ ) |
12 |
11
|
3expa |
⊢ ( ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐸 ( 0g ‘ 𝑊 ) ) ∈ ℝ ) |
13 |
7 12
|
fmpt3d |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐸 ∈ ( Met ‘ 𝑋 ) ) → 𝑁 : 𝑋 ⟶ ℝ ) |