Step |
Hyp |
Ref |
Expression |
1 |
|
0lnfn |
⊢ ( ℋ × { 0 } ) ∈ LinFn |
2 |
|
lnfnf |
⊢ ( ( ℋ × { 0 } ) ∈ LinFn → ( ℋ × { 0 } ) : ℋ ⟶ ℂ ) |
3 |
|
nmfnval |
⊢ ( ( ℋ × { 0 } ) : ℋ ⟶ ℂ → ( normfn ‘ ( ℋ × { 0 } ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( normfn ‘ ( ℋ × { 0 } ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ) } , ℝ* , < ) |
5 |
|
c0ex |
⊢ 0 ∈ V |
6 |
5
|
fvconst2 |
⊢ ( 𝑦 ∈ ℋ → ( ( ℋ × { 0 } ) ‘ 𝑦 ) = 0 ) |
7 |
6
|
fveq2d |
⊢ ( 𝑦 ∈ ℋ → ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) = ( abs ‘ 0 ) ) |
8 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑦 ∈ ℋ → ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) = 0 ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ↔ 𝑥 = 0 ) ) |
11 |
10
|
anbi2d |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
12 |
11
|
rexbiia |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) |
13 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
14 |
|
0le1 |
⊢ 0 ≤ 1 |
15 |
|
fveq2 |
⊢ ( 𝑦 = 0ℎ → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 0ℎ ) ) |
16 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
17 |
15 16
|
eqtrdi |
⊢ ( 𝑦 = 0ℎ → ( normℎ ‘ 𝑦 ) = 0 ) |
18 |
17
|
breq1d |
⊢ ( 𝑦 = 0ℎ → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ 0 ≤ 1 ) ) |
19 |
18
|
rspcev |
⊢ ( ( 0ℎ ∈ ℋ ∧ 0 ≤ 1 ) → ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 ) |
20 |
13 14 19
|
mp2an |
⊢ ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 |
21 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ ( ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) |
22 |
20 21
|
mpbiran |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ 𝑥 = 0 ) |
23 |
12 22
|
bitri |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ) ↔ 𝑥 = 0 ) |
24 |
23
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ) } = { 𝑥 ∣ 𝑥 = 0 } |
25 |
|
df-sn |
⊢ { 0 } = { 𝑥 ∣ 𝑥 = 0 } |
26 |
24 25
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ) } = { 0 } |
27 |
26
|
supeq1i |
⊢ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
28 |
|
xrltso |
⊢ < Or ℝ* |
29 |
|
0xr |
⊢ 0 ∈ ℝ* |
30 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
31 |
28 29 30
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
32 |
4 27 31
|
3eqtri |
⊢ ( normfn ‘ ( ℋ × { 0 } ) ) = 0 |