Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
2 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ 0ℎ ) ∈ ℂ ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝑇 ‘ 0ℎ ) ∈ ℂ ) |
4 |
3
|
absge0d |
⊢ ( 𝑇 : ℋ ⟶ ℂ → 0 ≤ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ) |
5 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
6 |
|
0le1 |
⊢ 0 ≤ 1 |
7 |
5 6
|
eqbrtri |
⊢ ( normℎ ‘ 0ℎ ) ≤ 1 |
8 |
|
nmfnlb |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 0ℎ ∈ ℋ ∧ ( normℎ ‘ 0ℎ ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) |
9 |
1 7 8
|
mp3an23 |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) |
10 |
3
|
abscld |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ ) |
11 |
10
|
rexrd |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ) |
12 |
|
nmfnxr |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) ∈ ℝ* ) |
13 |
|
0xr |
⊢ 0 ∈ ℝ* |
14 |
|
xrletr |
⊢ ( ( 0 ∈ ℝ* ∧ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ∧ ( normfn ‘ 𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) → 0 ≤ ( normfn ‘ 𝑇 ) ) ) |
15 |
13 14
|
mp3an1 |
⊢ ( ( ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ∧ ( normfn ‘ 𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) → 0 ≤ ( normfn ‘ 𝑇 ) ) ) |
16 |
11 12 15
|
syl2anc |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) → 0 ≤ ( normfn ‘ 𝑇 ) ) ) |
17 |
4 9 16
|
mp2and |
⊢ ( 𝑇 : ℋ ⟶ ℂ → 0 ≤ ( normfn ‘ 𝑇 ) ) |