Metamath Proof Explorer


Theorem nmfnge0

Description: The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006) (New usage is discouraged.)

Ref Expression
Assertion nmfnge0 ( 𝑇 : ℋ ⟶ ℂ → 0 ≤ ( normfn𝑇 ) )

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0 ∈ ℋ
2 ffvelrn ( ( 𝑇 : ℋ ⟶ ℂ ∧ 0 ∈ ℋ ) → ( 𝑇 ‘ 0 ) ∈ ℂ )
3 1 2 mpan2 ( 𝑇 : ℋ ⟶ ℂ → ( 𝑇 ‘ 0 ) ∈ ℂ )
4 3 absge0d ( 𝑇 : ℋ ⟶ ℂ → 0 ≤ ( abs ‘ ( 𝑇 ‘ 0 ) ) )
5 norm0 ( norm ‘ 0 ) = 0
6 0le1 0 ≤ 1
7 5 6 eqbrtri ( norm ‘ 0 ) ≤ 1
8 nmfnlb ( ( 𝑇 : ℋ ⟶ ℂ ∧ 0 ∈ ℋ ∧ ( norm ‘ 0 ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normfn𝑇 ) )
9 1 7 8 mp3an23 ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normfn𝑇 ) )
10 3 abscld ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ )
11 10 rexrd ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ* )
12 nmfnxr ( 𝑇 : ℋ ⟶ ℂ → ( normfn𝑇 ) ∈ ℝ* )
13 0xr 0 ∈ ℝ*
14 xrletr ( ( 0 ∈ ℝ* ∧ ( abs ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ* ∧ ( normfn𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0 ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normfn𝑇 ) ) → 0 ≤ ( normfn𝑇 ) ) )
15 13 14 mp3an1 ( ( ( abs ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ* ∧ ( normfn𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0 ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normfn𝑇 ) ) → 0 ≤ ( normfn𝑇 ) ) )
16 11 12 15 syl2anc ( 𝑇 : ℋ ⟶ ℂ → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0 ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normfn𝑇 ) ) → 0 ≤ ( normfn𝑇 ) ) )
17 4 9 16 mp2and ( 𝑇 : ℋ ⟶ ℂ → 0 ≤ ( normfn𝑇 ) )