| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmfnsetre | ⊢ ( 𝑇 :  ℋ ⟶ ℂ  →  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) }  ⊆  ℝ ) | 
						
							| 2 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 3 | 1 2 | sstrdi | ⊢ ( 𝑇 :  ℋ ⟶ ℂ  →  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) }  ⊆  ℝ* ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈   ℋ  ∧  ( normℎ ‘ 𝐴 )  ≤  1 )  →  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) }  ⊆  ℝ* ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑦  =  𝐴  →  ( normℎ ‘ 𝑦 )  =  ( normℎ ‘ 𝐴 ) ) | 
						
							| 6 | 5 | breq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( normℎ ‘ 𝑦 )  ≤  1  ↔  ( normℎ ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 7 |  | 2fveq3 | ⊢ ( 𝑦  =  𝐴  →  ( abs ‘ ( 𝑇 ‘ 𝑦 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑦  =  𝐴  →  ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) )  ↔  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) | 
						
							| 9 | 6 8 | anbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝐴 )  ≤  1  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) | 
						
							| 11 | 10 | biantru | ⊢ ( ( normℎ ‘ 𝐴 )  ≤  1  ↔  ( ( normℎ ‘ 𝐴 )  ≤  1  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) | 
						
							| 12 | 9 11 | bitr4di | ⊢ ( 𝑦  =  𝐴  →  ( ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) )  ↔  ( normℎ ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 13 | 12 | rspcev | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( normℎ ‘ 𝐴 )  ≤  1 )  →  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 14 |  | fvex | ⊢ ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  ∈  V | 
						
							| 15 |  | eqeq1 | ⊢ ( 𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  →  ( 𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) )  ↔  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 16 | 15 | anbi2d | ⊢ ( 𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  →  ( ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 17 | 16 | rexbidv | ⊢ ( 𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  →  ( ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) )  ↔  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 18 | 14 17 | elab | ⊢ ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) }  ↔  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 19 | 13 18 | sylibr | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( normℎ ‘ 𝐴 )  ≤  1 )  →  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) | 
						
							| 20 | 19 | 3adant1 | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈   ℋ  ∧  ( normℎ ‘ 𝐴 )  ≤  1 )  →  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) | 
						
							| 21 |  | supxrub | ⊢ ( ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) }  ⊆  ℝ*  ∧  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  ∈  { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } )  →  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  ≤  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 22 | 4 20 21 | syl2anc | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈   ℋ  ∧  ( normℎ ‘ 𝐴 )  ≤  1 )  →  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  ≤  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 23 |  | nmfnval | ⊢ ( 𝑇 :  ℋ ⟶ ℂ  →  ( normfn ‘ 𝑇 )  =  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈   ℋ  ∧  ( normℎ ‘ 𝐴 )  ≤  1 )  →  ( normfn ‘ 𝑇 )  =  sup ( { 𝑥  ∣  ∃ 𝑦  ∈   ℋ ( ( normℎ ‘ 𝑦 )  ≤  1  ∧  𝑥  =  ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 25 | 22 24 | breqtrrd | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈   ℋ  ∧  ( normℎ ‘ 𝐴 )  ≤  1 )  →  ( abs ‘ ( 𝑇 ‘ 𝐴 ) )  ≤  ( normfn ‘ 𝑇 ) ) |