| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmfnval | ⊢ ( 𝑇 :  ℋ ⟶ ℂ  →  ( normfn ‘ 𝑇 )  =  sup ( { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈  ℝ* )  →  ( normfn ‘ 𝑇 )  =  sup ( { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 3 | 2 | breq1d | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈  ℝ* )  →  ( ( normfn ‘ 𝑇 )  ≤  𝐴  ↔  sup ( { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  )  ≤  𝐴 ) ) | 
						
							| 4 |  | nmfnsetre | ⊢ ( 𝑇 :  ℋ ⟶ ℂ  →  { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) }  ⊆  ℝ ) | 
						
							| 5 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 6 | 4 5 | sstrdi | ⊢ ( 𝑇 :  ℋ ⟶ ℂ  →  { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) }  ⊆  ℝ* ) | 
						
							| 7 |  | supxrleub | ⊢ ( ( { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) }  ⊆  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( sup ( { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴 ) ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈  ℝ* )  →  ( sup ( { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴 ) ) | 
						
							| 9 |  | ancom | ⊢ ( ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) )  ↔  ( 𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 ) ) | 
						
							| 10 |  | eqeq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ↔  𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) | 
						
							| 11 | 10 | anbi1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  ↔  ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 ) ) ) | 
						
							| 12 | 9 11 | bitrid | ⊢ ( 𝑦  =  𝑧  →  ( ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) )  ↔  ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 ) ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑦  =  𝑧  →  ( ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) )  ↔  ∃ 𝑥  ∈   ℋ ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 ) ) ) | 
						
							| 14 | 13 | ralab | ⊢ ( ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴  ↔  ∀ 𝑧 ( ∃ 𝑥  ∈   ℋ ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 15 |  | ralcom4 | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑧 ( ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑧 ∀ 𝑥  ∈   ℋ ( ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 16 |  | impexp | ⊢ ( ( ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 )  ↔  ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( normℎ ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 17 | 16 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑧 ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( normℎ ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 18 |  | fvex | ⊢ ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∈  V | 
						
							| 19 |  | breq1 | ⊢ ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( 𝑧  ≤  𝐴  ↔  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( ( normℎ ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 )  ↔  ( ( normℎ ‘ 𝑥 )  ≤  1  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) ) | 
						
							| 21 | 18 20 | ceqsalv | ⊢ ( ∀ 𝑧 ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( normℎ ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 ) )  ↔  ( ( normℎ ‘ 𝑥 )  ≤  1  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 22 | 17 21 | bitri | ⊢ ( ∀ 𝑧 ( ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 )  ↔  ( ( normℎ ‘ 𝑥 )  ≤  1  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 23 | 22 | ralbii | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑧 ( ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 24 |  | r19.23v | ⊢ ( ∀ 𝑥  ∈   ℋ ( ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 )  ↔  ( ∃ 𝑥  ∈   ℋ ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 25 | 24 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑥  ∈   ℋ ( ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑧 ( ∃ 𝑥  ∈   ℋ ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 26 | 15 23 25 | 3bitr3i | ⊢ ( ∀ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 )  ↔  ∀ 𝑧 ( ∃ 𝑥  ∈   ℋ ( 𝑧  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( normℎ ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 27 | 14 26 | bitr4i | ⊢ ( ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴  ↔  ∀ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 28 | 8 27 | bitrdi | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈  ℝ* )  →  ( sup ( { 𝑦  ∣  ∃ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) ) | 
						
							| 29 | 3 28 | bitrd | ⊢ ( ( 𝑇 :  ℋ ⟶ ℂ  ∧  𝐴  ∈  ℝ* )  →  ( ( normfn ‘ 𝑇 )  ≤  𝐴  ↔  ∀ 𝑥  ∈   ℋ ( ( normℎ ‘ 𝑥 )  ≤  1  →  ( abs ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) ) |