Step |
Hyp |
Ref |
Expression |
1 |
|
normcl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
2 |
1
|
ad2antlr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
3 |
|
simpllr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
4 |
|
simpr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ 𝑥 ) ≤ 1 ) |
5 |
|
1re |
⊢ 1 ∈ ℝ |
6 |
|
lemul2a |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) |
7 |
5 6
|
mp3anl2 |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) |
8 |
2 3 4 7
|
syl21anc |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) |
9 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
10 |
9
|
ad2antrl |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · 1 ) = 𝐴 ) |
12 |
8 11
|
breqtrd |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) |
13 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℂ ) |
14 |
13
|
abscld |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
15 |
14
|
adantlr |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
16 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( normℎ ‘ 𝑥 ) ∈ ℝ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
17 |
1 16
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
20 |
|
simplrl |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℝ ) |
21 |
|
letr |
⊢ ( ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
22 |
15 19 20 21
|
syl3anc |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
24 |
12 23
|
mpan2d |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
25 |
24
|
ex |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
26 |
25
|
com23 |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
27 |
26
|
ralimdva |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
28 |
27
|
imp |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
29 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
30 |
29
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
31 |
|
nmfnleub |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℝ* ) → ( ( normfn ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
32 |
30 31
|
sylan2 |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ( normfn ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
33 |
32
|
biimpar |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) → ( normfn ‘ 𝑇 ) ≤ 𝐴 ) |
34 |
28 33
|
syldan |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ( normfn ‘ 𝑇 ) ≤ 𝐴 ) |
35 |
34
|
3impa |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ( normfn ‘ 𝑇 ) ≤ 𝐴 ) |