Step |
Hyp |
Ref |
Expression |
1 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℂ ) |
2 |
1
|
abscld |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
3 |
|
eleq1 |
⊢ ( 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) → ( 𝑥 ∈ ℝ ↔ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) ) |
4 |
2 3
|
syl5ibr |
⊢ ( 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) → ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℝ ) ) |
5 |
4
|
impcom |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) |
6 |
5
|
adantrl |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑦 ∈ ℋ ) ∧ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) → 𝑥 ∈ ℝ ) |
7 |
6
|
rexlimdva2 |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) ) |
8 |
7
|
abssdv |
⊢ ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |