Step |
Hyp |
Ref |
Expression |
1 |
|
nmfnval |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
2 |
|
nmfnsetre |
⊢ ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
3 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
4 |
2 3
|
sstrdi |
⊢ ( 𝑇 : ℋ ⟶ ℂ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
5 |
|
supxrcl |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ∈ ℝ* ) |
6 |
4 5
|
syl |
⊢ ( 𝑇 : ℋ ⟶ ℂ → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ∈ ℝ* ) |
7 |
1 6
|
eqeltrd |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) ∈ ℝ* ) |