Step |
Hyp |
Ref |
Expression |
1 |
|
nmfval.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
2 |
|
nmfval.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
3 |
|
nmfval.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
nmfval.d |
⊢ 𝐷 = ( dist ‘ 𝑊 ) |
5 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
6 |
5 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑋 ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑊 ) ) |
8 |
7 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = 𝐷 ) |
9 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝑥 = 𝑥 ) |
10 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝑊 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ 𝑤 ) = 0 ) |
12 |
8 9 11
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) = ( 𝑥 𝐷 0 ) ) |
13 |
6 12
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ) |
14 |
|
df-nm |
⊢ norm = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g ‘ 𝑤 ) ) ) ) |
15 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) |
16 |
|
df-ov |
⊢ ( 𝑥 𝐷 0 ) = ( 𝐷 ‘ 〈 𝑥 , 0 〉 ) |
17 |
|
fvrn0 |
⊢ ( 𝐷 ‘ 〈 𝑥 , 0 〉 ) ∈ ( ran 𝐷 ∪ { ∅ } ) |
18 |
16 17
|
eqeltri |
⊢ ( 𝑥 𝐷 0 ) ∈ ( ran 𝐷 ∪ { ∅ } ) |
19 |
18
|
a1i |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑥 𝐷 0 ) ∈ ( ran 𝐷 ∪ { ∅ } ) ) |
20 |
15 19
|
fmpti |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) : 𝑋 ⟶ ( ran 𝐷 ∪ { ∅ } ) |
21 |
2
|
fvexi |
⊢ 𝑋 ∈ V |
22 |
4
|
fvexi |
⊢ 𝐷 ∈ V |
23 |
22
|
rnex |
⊢ ran 𝐷 ∈ V |
24 |
|
p0ex |
⊢ { ∅ } ∈ V |
25 |
23 24
|
unex |
⊢ ( ran 𝐷 ∪ { ∅ } ) ∈ V |
26 |
|
fex2 |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) : 𝑋 ⟶ ( ran 𝐷 ∪ { ∅ } ) ∧ 𝑋 ∈ V ∧ ( ran 𝐷 ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ∈ V ) |
27 |
20 21 25 26
|
mp3an |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ∈ V |
28 |
13 14 27
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ) |
29 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ∅ ) |
30 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) = ∅ |
31 |
29 30
|
eqtr4di |
⊢ ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) ) |
32 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) |
33 |
2 32
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → 𝑋 = ∅ ) |
34 |
33
|
mpteq1d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) ) |
35 |
31 34
|
eqtr4d |
⊢ ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) ) |
36 |
28 35
|
pm2.61i |
⊢ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) |
37 |
1 36
|
eqtri |
⊢ 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝐷 0 ) ) |