Metamath Proof Explorer


Theorem nmfval

Description: The value of the norm function as the distance to zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses nmfval.n 𝑁 = ( norm ‘ 𝑊 )
nmfval.x 𝑋 = ( Base ‘ 𝑊 )
nmfval.z 0 = ( 0g𝑊 )
nmfval.d 𝐷 = ( dist ‘ 𝑊 )
Assertion nmfval 𝑁 = ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) )

Proof

Step Hyp Ref Expression
1 nmfval.n 𝑁 = ( norm ‘ 𝑊 )
2 nmfval.x 𝑋 = ( Base ‘ 𝑊 )
3 nmfval.z 0 = ( 0g𝑊 )
4 nmfval.d 𝐷 = ( dist ‘ 𝑊 )
5 fveq2 ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) )
6 5 2 eqtr4di ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑋 )
7 fveq2 ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑊 ) )
8 7 4 eqtr4di ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = 𝐷 )
9 eqidd ( 𝑤 = 𝑊𝑥 = 𝑥 )
10 fveq2 ( 𝑤 = 𝑊 → ( 0g𝑤 ) = ( 0g𝑊 ) )
11 10 3 eqtr4di ( 𝑤 = 𝑊 → ( 0g𝑤 ) = 0 )
12 8 9 11 oveq123d ( 𝑤 = 𝑊 → ( 𝑥 ( dist ‘ 𝑤 ) ( 0g𝑤 ) ) = ( 𝑥 𝐷 0 ) )
13 6 12 mpteq12dv ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g𝑤 ) ) ) = ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) )
14 df-nm norm = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( dist ‘ 𝑤 ) ( 0g𝑤 ) ) ) )
15 eqid ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) = ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) )
16 df-ov ( 𝑥 𝐷 0 ) = ( 𝐷 ‘ ⟨ 𝑥 , 0 ⟩ )
17 fvrn0 ( 𝐷 ‘ ⟨ 𝑥 , 0 ⟩ ) ∈ ( ran 𝐷 ∪ { ∅ } )
18 16 17 eqeltri ( 𝑥 𝐷 0 ) ∈ ( ran 𝐷 ∪ { ∅ } )
19 18 a1i ( 𝑥𝑋 → ( 𝑥 𝐷 0 ) ∈ ( ran 𝐷 ∪ { ∅ } ) )
20 15 19 fmpti ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) : 𝑋 ⟶ ( ran 𝐷 ∪ { ∅ } )
21 2 fvexi 𝑋 ∈ V
22 4 fvexi 𝐷 ∈ V
23 22 rnex ran 𝐷 ∈ V
24 p0ex { ∅ } ∈ V
25 23 24 unex ( ran 𝐷 ∪ { ∅ } ) ∈ V
26 fex2 ( ( ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) : 𝑋 ⟶ ( ran 𝐷 ∪ { ∅ } ) ∧ 𝑋 ∈ V ∧ ( ran 𝐷 ∪ { ∅ } ) ∈ V ) → ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) ∈ V )
27 20 21 25 26 mp3an ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) ∈ V
28 13 14 27 fvmpt ( 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) )
29 fvprc ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ∅ )
30 mpt0 ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) = ∅
31 29 30 eqtr4di ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) )
32 fvprc ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ )
33 2 32 syl5eq ( ¬ 𝑊 ∈ V → 𝑋 = ∅ )
34 33 mpteq1d ( ¬ 𝑊 ∈ V → ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝐷 0 ) ) )
35 31 34 eqtr4d ( ¬ 𝑊 ∈ V → ( norm ‘ 𝑊 ) = ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) ) )
36 28 35 pm2.61i ( norm ‘ 𝑊 ) = ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) )
37 1 36 eqtri 𝑁 = ( 𝑥𝑋 ↦ ( 𝑥 𝐷 0 ) )