Step |
Hyp |
Ref |
Expression |
1 |
|
nmf.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
nmf.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
3 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
6 |
3 5
|
syl |
⊢ ( 𝐺 ∈ NrmGrp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
8 |
|
ngpxms |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp ) |
9 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
10 |
1 9
|
xmsge0 |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → 0 ≤ ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
11 |
8 10
|
syl3an1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → 0 ≤ ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
12 |
7 11
|
mpd3an3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
13 |
2 1 4 9
|
nmval |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
15 |
12 14
|
breqtrrd |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |