Step |
Hyp |
Ref |
Expression |
1 |
|
nmgt0.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
nmgt0.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
3 |
|
nmgt0.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
1 2 3
|
nmeq0 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
5 |
4
|
necon3bid |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
6 |
1 2
|
nmcl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
7 |
1 2
|
nmge0 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
8 |
|
ne0gt0 |
⊢ ( ( ( 𝑁 ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ 𝐴 ) ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
10 |
5 9
|
bitr3d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |