Step |
Hyp |
Ref |
Expression |
1 |
|
nmhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑇 NMHom 𝑈 ) → 𝑈 ∈ NrmMod ) |
2 |
|
nmhmrcl1 |
⊢ ( 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) → 𝑆 ∈ NrmMod ) |
3 |
1 2
|
anim12ci |
⊢ ( ( 𝐹 ∈ ( 𝑇 NMHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( 𝑆 ∈ NrmMod ∧ 𝑈 ∈ NrmMod ) ) |
4 |
|
nmhmlmhm |
⊢ ( 𝐹 ∈ ( 𝑇 NMHom 𝑈 ) → 𝐹 ∈ ( 𝑇 LMHom 𝑈 ) ) |
5 |
|
nmhmlmhm |
⊢ ( 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) → 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) |
6 |
|
lmhmco |
⊢ ( ( 𝐹 ∈ ( 𝑇 LMHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 LMHom 𝑈 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 NMHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 LMHom 𝑈 ) ) |
8 |
|
nmhmnghm |
⊢ ( 𝐹 ∈ ( 𝑇 NMHom 𝑈 ) → 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) ) |
9 |
|
nmhmnghm |
⊢ ( 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) → 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) |
10 |
|
nghmco |
⊢ ( ( 𝐹 ∈ ( 𝑇 NGHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 NGHom 𝑈 ) ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 NMHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 NGHom 𝑈 ) ) |
12 |
7 11
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑇 NMHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 LMHom 𝑈 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 NGHom 𝑈 ) ) ) |
13 |
|
isnmhm |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 NMHom 𝑈 ) ↔ ( ( 𝑆 ∈ NrmMod ∧ 𝑈 ∈ NrmMod ) ∧ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 LMHom 𝑈 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 NGHom 𝑈 ) ) ) ) |
14 |
3 12 13
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑇 NMHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 NMHom 𝑈 ) ) |