Description: A normed module homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nmhmnghm | ⊢ ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnmhm | ⊢ ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) ∧ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) ) ) | |
2 | 1 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) ) |
3 | 2 | simprd | ⊢ ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |