Step |
Hyp |
Ref |
Expression |
1 |
|
nmhmplusg.p |
⊢ + = ( +g ‘ 𝑇 ) |
2 |
|
nmhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) → 𝑆 ∈ NrmMod ) |
3 |
|
nmhmrcl2 |
⊢ ( 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) → 𝑇 ∈ NrmMod ) |
4 |
2 3
|
anim12i |
⊢ ( ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) ) |
5 |
|
nmhmlmhm |
⊢ ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
6 |
|
nmhmlmhm |
⊢ ( 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) → 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) |
7 |
1
|
lmhmplusg |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 LMHom 𝑇 ) ) |
8 |
5 6 7
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 LMHom 𝑇 ) ) |
9 |
|
nlmlmod |
⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ LMod ) |
10 |
|
lmodabl |
⊢ ( 𝑇 ∈ LMod → 𝑇 ∈ Abel ) |
11 |
3 9 10
|
3syl |
⊢ ( 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) → 𝑇 ∈ Abel ) |
12 |
11
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → 𝑇 ∈ Abel ) |
13 |
|
nmhmnghm |
⊢ ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
15 |
|
nmhmnghm |
⊢ ( 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) → 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) |
17 |
1
|
nghmplusg |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 NGHom 𝑇 ) ) |
18 |
12 14 16 17
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 NGHom 𝑇 ) ) |
19 |
8 18
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 NGHom 𝑇 ) ) ) |
20 |
|
isnmhm |
⊢ ( ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 NMHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmMod ∧ 𝑇 ∈ NrmMod ) ∧ ( ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 NGHom 𝑇 ) ) ) ) |
21 |
4 19 20
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 NMHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NMHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 NMHom 𝑇 ) ) |