| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | nmf.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 3 |  | nminv.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 4 |  | ngpgrp | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  Grp ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 | 1 6 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 8 | 5 7 | syl | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 9 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 10 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 11 | 2 1 9 10 | ngpdsr | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  ( 0g ‘ 𝐺 )  ∈  𝑋 )  →  ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  =  ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) | 
						
							| 12 | 8 11 | mpd3an3 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  =  ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) | 
						
							| 13 | 2 1 6 10 | nmval | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 15 | 1 9 3 6 | grpinvval2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐼 ‘ 𝐴 )  =  ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 16 | 4 15 | sylan | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐼 ‘ 𝐴 )  =  ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) )  =  ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) | 
						
							| 18 | 12 14 17 | 3eqtr4rd | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) )  =  ( 𝑁 ‘ 𝐴 ) ) |