Step |
Hyp |
Ref |
Expression |
1 |
|
nmlno0.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
2 |
|
nmlno0.0 |
⊢ 𝑍 = ( 𝑈 0op 𝑊 ) |
3 |
|
nmlno0.7 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
4 |
|
nmlno0i.u |
⊢ 𝑈 ∈ NrmCVec |
5 |
|
nmlno0i.w |
⊢ 𝑊 ∈ NrmCVec |
6 |
|
fveqeq2 |
⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) → ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ ( 𝑁 ‘ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) ) = 0 ) ) |
7 |
|
eqeq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) → ( 𝑇 = 𝑍 ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) = 𝑍 ) ) |
8 |
6 7
|
bibi12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) → ( ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) ↔ ( ( 𝑁 ‘ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) ) = 0 ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) = 𝑍 ) ) ) |
9 |
2 3
|
0lno |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 ∈ 𝐿 ) |
10 |
4 5 9
|
mp2an |
⊢ 𝑍 ∈ 𝐿 |
11 |
10
|
elimel |
⊢ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) ∈ 𝐿 |
12 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
17 |
|
eqid |
⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) |
18 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
19 |
|
eqid |
⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) |
20 |
1 2 3 4 5 11 12 13 14 15 16 17 18 19
|
nmlno0lem |
⊢ ( ( 𝑁 ‘ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) ) = 0 ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) = 𝑍 ) |
21 |
8 20
|
dedth |
⊢ ( 𝑇 ∈ 𝐿 → ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) ) |