Metamath Proof Explorer


Theorem nmlno0i

Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmlno0.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
nmlno0.0 𝑍 = ( 𝑈 0op 𝑊 )
nmlno0.7 𝐿 = ( 𝑈 LnOp 𝑊 )
nmlno0i.u 𝑈 ∈ NrmCVec
nmlno0i.w 𝑊 ∈ NrmCVec
Assertion nmlno0i ( 𝑇𝐿 → ( ( 𝑁𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) )

Proof

Step Hyp Ref Expression
1 nmlno0.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
2 nmlno0.0 𝑍 = ( 𝑈 0op 𝑊 )
3 nmlno0.7 𝐿 = ( 𝑈 LnOp 𝑊 )
4 nmlno0i.u 𝑈 ∈ NrmCVec
5 nmlno0i.w 𝑊 ∈ NrmCVec
6 fveqeq2 ( 𝑇 = if ( 𝑇𝐿 , 𝑇 , 𝑍 ) → ( ( 𝑁𝑇 ) = 0 ↔ ( 𝑁 ‘ if ( 𝑇𝐿 , 𝑇 , 𝑍 ) ) = 0 ) )
7 eqeq1 ( 𝑇 = if ( 𝑇𝐿 , 𝑇 , 𝑍 ) → ( 𝑇 = 𝑍 ↔ if ( 𝑇𝐿 , 𝑇 , 𝑍 ) = 𝑍 ) )
8 6 7 bibi12d ( 𝑇 = if ( 𝑇𝐿 , 𝑇 , 𝑍 ) → ( ( ( 𝑁𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) ↔ ( ( 𝑁 ‘ if ( 𝑇𝐿 , 𝑇 , 𝑍 ) ) = 0 ↔ if ( 𝑇𝐿 , 𝑇 , 𝑍 ) = 𝑍 ) ) )
9 2 3 0lno ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍𝐿 )
10 4 5 9 mp2an 𝑍𝐿
11 10 elimel if ( 𝑇𝐿 , 𝑇 , 𝑍 ) ∈ 𝐿
12 eqid ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 )
13 eqid ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 )
14 eqid ( ·𝑠OLD𝑈 ) = ( ·𝑠OLD𝑈 )
15 eqid ( ·𝑠OLD𝑊 ) = ( ·𝑠OLD𝑊 )
16 eqid ( 0vec𝑈 ) = ( 0vec𝑈 )
17 eqid ( 0vec𝑊 ) = ( 0vec𝑊 )
18 eqid ( normCV𝑈 ) = ( normCV𝑈 )
19 eqid ( normCV𝑊 ) = ( normCV𝑊 )
20 1 2 3 4 5 11 12 13 14 15 16 17 18 19 nmlno0lem ( ( 𝑁 ‘ if ( 𝑇𝐿 , 𝑇 , 𝑍 ) ) = 0 ↔ if ( 𝑇𝐿 , 𝑇 , 𝑍 ) = 𝑍 )
21 8 20 dedth ( 𝑇𝐿 → ( ( 𝑁𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) )