Step |
Hyp |
Ref |
Expression |
1 |
|
nmlno0.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
2 |
|
nmlno0.0 |
⊢ 𝑍 = ( 𝑈 0op 𝑊 ) |
3 |
|
nmlno0.7 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
4 |
|
nmlno0lem.u |
⊢ 𝑈 ∈ NrmCVec |
5 |
|
nmlno0lem.w |
⊢ 𝑊 ∈ NrmCVec |
6 |
|
nmlno0lem.l |
⊢ 𝑇 ∈ 𝐿 |
7 |
|
nmlno0lem.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
8 |
|
nmlno0lem.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
9 |
|
nmlno0lem.r |
⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) |
10 |
|
nmlno0lem.s |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) |
11 |
|
nmlno0lem.p |
⊢ 𝑃 = ( 0vec ‘ 𝑈 ) |
12 |
|
nmlno0lem.q |
⊢ 𝑄 = ( 0vec ‘ 𝑊 ) |
13 |
|
nmlno0lem.k |
⊢ 𝐾 = ( normCV ‘ 𝑈 ) |
14 |
|
nmlno0lem.m |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
15 |
7 13
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( 𝐾 ‘ 𝑥 ) ∈ ℝ ) |
16 |
4 15
|
mpan |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝐾 ‘ 𝑥 ) ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝐾 ‘ 𝑥 ) ∈ ℂ ) |
18 |
17
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ 𝑥 ) ∈ ℂ ) |
19 |
7 11 13
|
nvz |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐾 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑃 ) ) |
20 |
4 19
|
mpan |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐾 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑃 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑃 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑃 ) ) |
22 |
7 8 11 12 3
|
lno0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ 𝑃 ) = 𝑄 ) |
23 |
4 5 6 22
|
mp3an |
⊢ ( 𝑇 ‘ 𝑃 ) = 𝑄 |
24 |
21 23
|
eqtrdi |
⊢ ( 𝑥 = 𝑃 → ( 𝑇 ‘ 𝑥 ) = 𝑄 ) |
25 |
20 24
|
syl6bi |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐾 ‘ 𝑥 ) = 0 → ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) |
26 |
25
|
necon3d |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → ( 𝐾 ‘ 𝑥 ) ≠ 0 ) ) |
27 |
26
|
imp |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ 𝑥 ) ≠ 0 ) |
28 |
18 27
|
recne0d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 1 / ( 𝐾 ‘ 𝑥 ) ) ≠ 0 ) |
29 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) |
30 |
18 27
|
reccld |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ) |
31 |
7 8 3
|
lnof |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
32 |
4 5 6 31
|
mp3an |
⊢ 𝑇 : 𝑋 ⟶ 𝑌 |
33 |
32
|
ffvelrni |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) |
34 |
33
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) |
35 |
8 10 12
|
nvmul0or |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) = 𝑄 ↔ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) ) |
36 |
5 35
|
mp3an1 |
⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) = 𝑄 ↔ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) ) |
37 |
30 34 36
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) = 𝑄 ↔ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) ) |
38 |
37
|
necon3abid |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ↔ ¬ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) ) |
39 |
|
neanior |
⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ≠ 0 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) ↔ ¬ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) |
40 |
38 39
|
bitr4di |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ↔ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ≠ 0 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) ) ) |
41 |
28 29 40
|
mpbir2and |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ) |
42 |
8 10
|
nvscl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) |
43 |
5 42
|
mp3an1 |
⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) |
44 |
30 34 43
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) |
45 |
8 12 14
|
nvgt0 |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ↔ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
46 |
5 44 45
|
sylancr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ↔ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
47 |
41 46
|
mpbid |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) |
48 |
47
|
ex |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
49 |
48
|
adantl |
⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
50 |
8 14
|
nmosetre |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) |
51 |
5 32 50
|
mp2an |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ |
52 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
53 |
51 52
|
sstri |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* |
54 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → 𝑥 ∈ 𝑋 ) |
55 |
7 9
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ∈ 𝑋 ) |
56 |
4 55
|
mp3an1 |
⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ∈ 𝑋 ) |
57 |
30 54 56
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ∈ 𝑋 ) |
58 |
24
|
necon3i |
⊢ ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → 𝑥 ≠ 𝑃 ) |
59 |
7 9 11 13
|
nv1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑥 ≠ 𝑃 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = 1 ) |
60 |
4 59
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ≠ 𝑃 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = 1 ) |
61 |
58 60
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = 1 ) |
62 |
|
1re |
⊢ 1 ∈ ℝ |
63 |
61 62
|
eqeltrdi |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ∈ ℝ ) |
64 |
|
eqle |
⊢ ( ( ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ∈ ℝ ∧ ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = 1 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ) |
65 |
63 61 64
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ) |
66 |
4 5 6
|
3pm3.2i |
⊢ ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) |
67 |
7 9 10 3
|
lnomul |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) |
68 |
66 67
|
mpan |
⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) |
69 |
30 54 68
|
syl2anc |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) |
70 |
69
|
eqcomd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) |
71 |
70
|
fveq2d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) |
72 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( 𝐾 ‘ 𝑧 ) = ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) |
73 |
72
|
breq1d |
⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ↔ ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ) ) |
74 |
|
2fveq3 |
⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) |
75 |
74
|
eqeq2d |
⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) ) |
76 |
73 75
|
anbi12d |
⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) ) ) |
77 |
76
|
rspcev |
⊢ ( ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ∈ 𝑋 ∧ ( ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) ) → ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
78 |
57 65 71 77
|
syl12anc |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
79 |
|
fvex |
⊢ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ V |
80 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
81 |
80
|
anbi2d |
⊢ ( 𝑦 = ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) → ( ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
82 |
81
|
rexbidv |
⊢ ( 𝑦 = ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) → ( ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
83 |
79 82
|
elab |
⊢ ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
84 |
78 83
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) |
85 |
|
supxrub |
⊢ ( ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
86 |
53 84 85
|
sylancr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
87 |
86
|
adantll |
⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
88 |
7 8 13 14 1
|
nmooval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
89 |
4 5 32 88
|
mp3an |
⊢ ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
90 |
89
|
eqeq1i |
⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
91 |
90
|
biimpi |
⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 → sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
92 |
91
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
93 |
87 92
|
breqtrd |
⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ) |
94 |
8 14
|
nvcl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
95 |
5 44 94
|
sylancr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
96 |
|
0re |
⊢ 0 ∈ ℝ |
97 |
|
lenlt |
⊢ ( ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
98 |
95 96 97
|
sylancl |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
99 |
98
|
adantll |
⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
100 |
93 99
|
mpbid |
⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) |
101 |
100
|
ex |
⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
102 |
49 101
|
pm2.65d |
⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ¬ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) |
103 |
|
nne |
⊢ ( ¬ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ↔ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) |
104 |
102 103
|
sylib |
⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑥 ) = 𝑄 ) |
105 |
7 12 2
|
0oval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( 𝑍 ‘ 𝑥 ) = 𝑄 ) |
106 |
4 5 105
|
mp3an12 |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑍 ‘ 𝑥 ) = 𝑄 ) |
107 |
106
|
adantl |
⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑍 ‘ 𝑥 ) = 𝑄 ) |
108 |
104 107
|
eqtr4d |
⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑥 ) ) |
109 |
108
|
ralrimiva |
⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 → ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑥 ) ) |
110 |
|
ffn |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → 𝑇 Fn 𝑋 ) |
111 |
32 110
|
ax-mp |
⊢ 𝑇 Fn 𝑋 |
112 |
7 8 2
|
0oo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 : 𝑋 ⟶ 𝑌 ) |
113 |
4 5 112
|
mp2an |
⊢ 𝑍 : 𝑋 ⟶ 𝑌 |
114 |
|
ffn |
⊢ ( 𝑍 : 𝑋 ⟶ 𝑌 → 𝑍 Fn 𝑋 ) |
115 |
113 114
|
ax-mp |
⊢ 𝑍 Fn 𝑋 |
116 |
|
eqfnfv |
⊢ ( ( 𝑇 Fn 𝑋 ∧ 𝑍 Fn 𝑋 ) → ( 𝑇 = 𝑍 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑥 ) ) ) |
117 |
111 115 116
|
mp2an |
⊢ ( 𝑇 = 𝑍 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑥 ) ) |
118 |
109 117
|
sylibr |
⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 → 𝑇 = 𝑍 ) |
119 |
|
fveq2 |
⊢ ( 𝑇 = 𝑍 → ( 𝑁 ‘ 𝑇 ) = ( 𝑁 ‘ 𝑍 ) ) |
120 |
1 2
|
nmoo0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = 0 ) |
121 |
4 5 120
|
mp2an |
⊢ ( 𝑁 ‘ 𝑍 ) = 0 |
122 |
119 121
|
eqtrdi |
⊢ ( 𝑇 = 𝑍 → ( 𝑁 ‘ 𝑇 ) = 0 ) |
123 |
118 122
|
impbii |
⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) |