Step |
Hyp |
Ref |
Expression |
1 |
|
fveqeq2 |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( ( normop ‘ 𝑇 ) = 0 ↔ ( normop ‘ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ) = 0 ) ) |
2 |
|
eqeq1 |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( 𝑇 = 0hop ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 0hop ) ) |
3 |
1 2
|
bibi12d |
⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) ↔ ( ( normop ‘ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ) = 0 ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 0hop ) ) ) |
4 |
|
0lnop |
⊢ 0hop ∈ LinOp |
5 |
4
|
elimel |
⊢ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ∈ LinOp |
6 |
5
|
nmlnop0iHIL |
⊢ ( ( normop ‘ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ) = 0 ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 0hop ) |
7 |
3 6
|
dedth |
⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) ) |