| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmlnop0.1 |
⊢ 𝑇 ∈ LinOp |
| 2 |
|
normcl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 3 |
2
|
recnd |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ 𝑥 ) ∈ ℂ ) |
| 5 |
|
norm-i |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) = 0 ↔ 𝑥 = 0ℎ ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = 0ℎ → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 0ℎ ) ) |
| 7 |
1
|
lnop0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0ℎ |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝑥 = 0ℎ → ( 𝑇 ‘ 𝑥 ) = 0ℎ ) |
| 9 |
5 8
|
biimtrdi |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) = 0 → ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) |
| 10 |
9
|
necon3d |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → ( normℎ ‘ 𝑥 ) ≠ 0 ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ 𝑥 ) ≠ 0 ) |
| 12 |
4 11
|
recne0d |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝑥 ) ) ≠ 0 ) |
| 13 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) |
| 14 |
4 11
|
reccld |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ) |
| 15 |
1
|
lnopfi |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 16 |
15
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 18 |
|
hvmul0or |
⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = 0ℎ ↔ ( ( 1 / ( normℎ ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) ) |
| 19 |
14 17 18
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = 0ℎ ↔ ( ( 1 / ( normℎ ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) ) |
| 20 |
19
|
necon3abid |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ↔ ¬ ( ( 1 / ( normℎ ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) ) |
| 21 |
|
neanior |
⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ≠ 0 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) ↔ ¬ ( ( 1 / ( normℎ ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) ) |
| 22 |
20 21
|
bitr4di |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ↔ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ≠ 0 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) ) ) |
| 23 |
12 13 22
|
mpbir2and |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ) |
| 24 |
|
hvmulcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 25 |
14 17 24
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 26 |
|
normgt0 |
⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ↔ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ≠ 0ℎ ↔ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 28 |
23 27
|
mpbid |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 29 |
28
|
ex |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 30 |
29
|
adantl |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 31 |
|
nmopsetretHIL |
⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) |
| 32 |
15 31
|
ax-mp |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ |
| 33 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 34 |
32 33
|
sstri |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* |
| 35 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → 𝑥 ∈ ℋ ) |
| 36 |
|
hvmulcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ∈ ℋ ) |
| 37 |
14 35 36
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ∈ ℋ ) |
| 38 |
8
|
necon3i |
⊢ ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → 𝑥 ≠ 0ℎ ) |
| 39 |
|
norm1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑥 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = 1 ) |
| 40 |
38 39
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = 1 ) |
| 41 |
|
1re |
⊢ 1 ∈ ℝ |
| 42 |
40 41
|
eqeltrdi |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ∈ ℝ ) |
| 43 |
|
eqle |
⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ) |
| 44 |
42 40 43
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ) |
| 45 |
1
|
lnopmuli |
⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 46 |
14 35 45
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 47 |
46
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) |
| 48 |
47
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( normℎ ‘ 𝑧 ) = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) |
| 50 |
49
|
breq1d |
⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( ( normℎ ‘ 𝑧 ) ≤ 1 ↔ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) |
| 52 |
51
|
fveq2d |
⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ↔ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) ) |
| 54 |
50 53
|
anbi12d |
⊢ ( 𝑧 = ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) → ( ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) ) ) |
| 55 |
54
|
rspcev |
⊢ ( ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ∈ ℋ ∧ ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ 𝑥 ) ) ) ) ) → ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 56 |
37 44 48 55
|
syl12anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 57 |
|
fvex |
⊢ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ V |
| 58 |
|
eqeq1 |
⊢ ( 𝑦 = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ↔ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 59 |
58
|
anbi2d |
⊢ ( 𝑦 = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) → ( ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 60 |
59
|
rexbidv |
⊢ ( 𝑦 = ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) → ( ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 61 |
57 60
|
elab |
⊢ ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ↔ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 62 |
56 61
|
sylibr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) |
| 63 |
|
supxrub |
⊢ ( ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 64 |
34 62 63
|
sylancr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 65 |
64
|
adantll |
⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 66 |
|
nmopval |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 67 |
15 66
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
| 68 |
67
|
eqeq1i |
⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 69 |
68
|
biimpi |
⊢ ( ( normop ‘ 𝑇 ) = 0 → sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 70 |
69
|
ad2antrr |
⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → sup ( { 𝑦 ∣ ∃ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 71 |
65 70
|
breqtrd |
⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ) |
| 72 |
|
normcl |
⊢ ( ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 73 |
25 72
|
syl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 74 |
|
0re |
⊢ 0 ∈ ℝ |
| 75 |
|
lenlt |
⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 76 |
73 74 75
|
sylancl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 77 |
76
|
adantll |
⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 78 |
71 77
|
mpbid |
⊢ ( ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) → ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 79 |
78
|
ex |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ → ¬ 0 < ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑥 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 80 |
30 79
|
pm2.65d |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ¬ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ) |
| 81 |
|
nne |
⊢ ( ¬ ( 𝑇 ‘ 𝑥 ) ≠ 0ℎ ↔ ( 𝑇 ‘ 𝑥 ) = 0ℎ ) |
| 82 |
80 81
|
sylib |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) = 0ℎ ) |
| 83 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 84 |
83
|
adantl |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 85 |
82 84
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 86 |
85
|
ralrimiva |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 87 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) |
| 88 |
15 87
|
ax-mp |
⊢ 𝑇 Fn ℋ |
| 89 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
| 90 |
|
ffn |
⊢ ( 0hop : ℋ ⟶ ℋ → 0hop Fn ℋ ) |
| 91 |
89 90
|
ax-mp |
⊢ 0hop Fn ℋ |
| 92 |
|
eqfnfv |
⊢ ( ( 𝑇 Fn ℋ ∧ 0hop Fn ℋ ) → ( 𝑇 = 0hop ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) ) |
| 93 |
88 91 92
|
mp2an |
⊢ ( 𝑇 = 0hop ↔ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 94 |
86 93
|
sylibr |
⊢ ( ( normop ‘ 𝑇 ) = 0 → 𝑇 = 0hop ) |
| 95 |
|
fveq2 |
⊢ ( 𝑇 = 0hop → ( normop ‘ 𝑇 ) = ( normop ‘ 0hop ) ) |
| 96 |
|
nmop0 |
⊢ ( normop ‘ 0hop ) = 0 |
| 97 |
95 96
|
eqtrdi |
⊢ ( 𝑇 = 0hop → ( normop ‘ 𝑇 ) = 0 ) |
| 98 |
94 97
|
impbii |
⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) |