Metamath Proof Explorer


Theorem nmlnop0iHIL

Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis nmlnop0.1 𝑇 ∈ LinOp
Assertion nmlnop0iHIL ( ( normop𝑇 ) = 0 ↔ 𝑇 = 0hop )

Proof

Step Hyp Ref Expression
1 nmlnop0.1 𝑇 ∈ LinOp
2 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
3 eqid ( ⟨ ⟨ + , · ⟩ , norm ⟩ normOpOLD ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( ⟨ ⟨ + , · ⟩ , norm ⟩ normOpOLD ⟨ ⟨ + , · ⟩ , norm ⟩ )
4 2 3 hhnmoi normop = ( ⟨ ⟨ + , · ⟩ , norm ⟩ normOpOLD ⟨ ⟨ + , · ⟩ , norm ⟩ )
5 eqid ( ⟨ ⟨ + , · ⟩ , norm ⟩ 0op ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( ⟨ ⟨ + , · ⟩ , norm ⟩ 0op ⟨ ⟨ + , · ⟩ , norm ⟩ )
6 2 5 hh0oi 0hop = ( ⟨ ⟨ + , · ⟩ , norm ⟩ 0op ⟨ ⟨ + , · ⟩ , norm ⟩ )
7 eqid ( ⟨ ⟨ + , · ⟩ , norm ⟩ LnOp ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( ⟨ ⟨ + , · ⟩ , norm ⟩ LnOp ⟨ ⟨ + , · ⟩ , norm ⟩ )
8 2 7 hhlnoi LinOp = ( ⟨ ⟨ + , · ⟩ , norm ⟩ LnOp ⟨ ⟨ + , · ⟩ , norm ⟩ )
9 2 hhnv ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec
10 4 6 8 9 9 nmlno0i ( 𝑇 ∈ LinOp → ( ( normop𝑇 ) = 0 ↔ 𝑇 = 0hop ) )
11 1 10 ax-mp ( ( normop𝑇 ) = 0 ↔ 𝑇 = 0hop )