Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nmlnop0.1 | ⊢ 𝑇 ∈ LinOp | |
Assertion | nmlnopgt0i | ⊢ ( 𝑇 ≠ 0hop ↔ 0 < ( normop ‘ 𝑇 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmlnop0.1 | ⊢ 𝑇 ∈ LinOp | |
2 | 1 | nmlnop0iHIL | ⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) |
3 | 2 | necon3bii | ⊢ ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) |
4 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
5 | nmopgt0 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) ) | |
6 | 4 5 | ax-mp | ⊢ ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) |
7 | 3 6 | bitr3i | ⊢ ( 𝑇 ≠ 0hop ↔ 0 < ( normop ‘ 𝑇 ) ) |