Metamath Proof Explorer


Theorem nmlnopgt0i

Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmlnop0.1 𝑇 ∈ LinOp
Assertion nmlnopgt0i ( 𝑇 ≠ 0hop ↔ 0 < ( normop𝑇 ) )

Proof

Step Hyp Ref Expression
1 nmlnop0.1 𝑇 ∈ LinOp
2 1 nmlnop0iHIL ( ( normop𝑇 ) = 0 ↔ 𝑇 = 0hop )
3 2 necon3bii ( ( normop𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop )
4 1 lnopfi 𝑇 : ℋ ⟶ ℋ
5 nmopgt0 ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) ≠ 0 ↔ 0 < ( normop𝑇 ) ) )
6 4 5 ax-mp ( ( normop𝑇 ) ≠ 0 ↔ 0 < ( normop𝑇 ) )
7 3 6 bitr3i ( 𝑇 ≠ 0hop ↔ 0 < ( normop𝑇 ) )