Metamath Proof Explorer


Theorem nmlnopne0

Description: A linear operator with a nonzero norm is nonzero. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion nmlnopne0 ( 𝑇 ∈ LinOp → ( ( normop𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) )

Proof

Step Hyp Ref Expression
1 nmlnop0 ( 𝑇 ∈ LinOp → ( ( normop𝑇 ) = 0 ↔ 𝑇 = 0hop ) )
2 1 necon3bid ( 𝑇 ∈ LinOp → ( ( normop𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) )