Metamath Proof Explorer
Description: A linear operator with a nonzero norm is nonzero. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
nmlnopne0 |
⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nmlnop0 |
⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) ) |
2 |
1
|
necon3bid |
⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 𝑇 ≠ 0hop ) ) |