Metamath Proof Explorer
		
		
		
		Description:  A linear operator with a nonzero norm is nonzero.  (Contributed by NM, 12-Aug-2006)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					nmlnopne0 | 
					⊢  ( 𝑇  ∈  LinOp  →  ( ( normop ‘ 𝑇 )  ≠  0  ↔  𝑇  ≠   0hop  ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nmlnop0 | 
							⊢ ( 𝑇  ∈  LinOp  →  ( ( normop ‘ 𝑇 )  =  0  ↔  𝑇  =   0hop  ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							necon3bid | 
							⊢ ( 𝑇  ∈  LinOp  →  ( ( normop ‘ 𝑇 )  ≠  0  ↔  𝑇  ≠   0hop  ) )  |