| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | nmf.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 3 |  | nmmtri.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 5 | 2 1 3 4 | ngpds | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  =  ( 𝑁 ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 6 |  | ngpms | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  MetSp ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐺  ∈  MetSp ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐵  ∈  𝑋 ) | 
						
							| 10 |  | ngpgrp | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  Grp ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 12 | 1 11 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝐺  ∈  NrmGrp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 15 | 1 4 | mstri3 | ⊢ ( ( 𝐺  ∈  MetSp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( 0g ‘ 𝐺 )  ∈  𝑋 ) )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  ≤  ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  +  ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 16 | 7 8 9 14 15 | syl13anc | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  ≤  ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  +  ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 17 | 2 1 11 4 | nmval | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 19 | 2 1 11 4 | nmval | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝑁 ‘ 𝐵 )  =  ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐵 )  =  ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝐴 )  +  ( 𝑁 ‘ 𝐵 ) )  =  ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  +  ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 22 | 16 21 | breqtrrd | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 )  ≤  ( ( 𝑁 ‘ 𝐴 )  +  ( 𝑁 ‘ 𝐵 ) ) ) | 
						
							| 23 | 5 22 | eqbrtrrd | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴  −  𝐵 ) )  ≤  ( ( 𝑁 ‘ 𝐴 )  +  ( 𝑁 ‘ 𝐵 ) ) ) |