Description: The norm of a product in a normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmmul.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
nmmul.n | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | ||
nmmul.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
Assertion | nmmul | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmmul.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
2 | nmmul.n | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
3 | nmmul.t | ⊢ · = ( .r ‘ 𝑅 ) | |
4 | eqid | ⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) | |
5 | 2 4 | nrgabv | ⊢ ( 𝑅 ∈ NrmRing → 𝑁 ∈ ( AbsVal ‘ 𝑅 ) ) |
6 | 4 1 3 | abvmul | ⊢ ( ( 𝑁 ∈ ( AbsVal ‘ 𝑅 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
7 | 5 6 | syl3an1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |