Metamath Proof Explorer


Theorem nmne0

Description: The norm of a nonzero element is nonzero. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x 𝑋 = ( Base ‘ 𝐺 )
nmf.n 𝑁 = ( norm ‘ 𝐺 )
nmeq0.z 0 = ( 0g𝐺 )
Assertion nmne0 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → ( 𝑁𝐴 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 nmf.x 𝑋 = ( Base ‘ 𝐺 )
2 nmf.n 𝑁 = ( norm ‘ 𝐺 )
3 nmeq0.z 0 = ( 0g𝐺 )
4 1 2 3 nmeq0 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) = 0 ↔ 𝐴 = 0 ) )
5 4 necon3bid ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) ≠ 0 ↔ 𝐴0 ) )
6 5 biimp3ar ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → ( 𝑁𝐴 ) ≠ 0 )