Description: The norm of a nonzero element is nonzero. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nmeq0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | nmne0 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 0 ) → ( 𝑁 ‘ 𝐴 ) ≠ 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | nmeq0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | nmeq0 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) | 
| 5 | 4 | necon3bid | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) | 
| 6 | 5 | biimp3ar | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 0 ) → ( 𝑁 ‘ 𝐴 ) ≠ 0 ) |